Объяснение:
Дана правильная треугольная пирамида. Её высота Н равна a√3, радиус окружности, описанной около её основания, равен 2a.
Найти: а) апофему А пирамиды.
Радиус R окружности, описанной около её основания, равен 2/3 высоты основания, то есть R = в√3/3, где в - сторона основания.
Находим сторону основания: в = R/(√3/3) = R√3 = 2a√3.
Отсюда апофема равна: А = √(Н² + (R/2)²) = √(3a² + a²) = √4a² = 2a.
Величина R/2 равна 1/3 высоты основания или радиусу вписанной окружности в основание.
б) угол α между боковой гранью и основанием равен:
α = arc tg(H/(R/2)) = arc tg(a√3/a) = arc tg√3 = 60 градусов.
в) площадь Sбок боковой поверхности.
Периметр основания Р = 3в = 3*2a√3 = 6a√3.
Sбок = (1/2)РА = (1/2)*(6a√3)*2а = 6a²√3 кв.ед.
г) плоский угол γ при вершине пирамиды(угол боковой грани).
γ = 2arc tg((в/2)/А) = 2arc tg((2а√3/2)/2а) = 2arc tg(√3/2) ≈ 1,42745 радиан или 81,7868 градуса.
Соединение средин сторон треугольника называется средней линией треугольника. Она расположена параллельно третьей стороне, а длина ее равна половине длины этой стороны. Поэтому можно утверждать, что и стороны меньшего треугольника так же будут относится как 4:3:5.
Так как периметр треугольника, образованного средними линиями равен 3,6 дм, а стороны относятся как 4:3:5, то выразим это следующим образом (Для удобства вычисления переведем все величины в сантиметры 1 дм = 10 см):
4х – длина отрезка АВ;
3х – длина отрезка ВС;
5х – длина отрезка АС;
4х + 3х + 5х = 36;
12х = 36;
х = 36 / 12 = 3;
АВ = 4 · 3 = 12 см;
ВС = 3 · 3 = 9 см;
АС = 5 · 3 = 15 см.
ответ: стороны треугольника, образованного средними линиями равны 12 см = 1,2 дм, 9 см = 0,9 дм, 15 см = 1,5 дм.
Поделитесь своими знаниями, ответьте на вопрос:
4x=180
x=180 : 4
x=45
первый угол равен 45
второй 45*3=135