Tatianamir765654
?>

Угол между диагоналями прямоугольника равен 120 градусов. найдите угол между диагональю и большей стороной прямоугольника.

Геометрия

Ответы

sakh2010kprf7
Оскільки діагоналі при перетині діляться навпіл, то перетнувшись вони утворять рівнобедрений трикутник, в якого кут між бічними сторонами дорівнює 120 градусів. Отже шукані кути дорівнюють по 30 градусів

Поскольку диагонали при пересечении делятся пополам, то пересекая они образуют равнобедренный треугольник, у которого угол между боковыми сторонами равен 120 градусов. Итак искомые углы равны по 30 градусов
rodsher7740
Нужно знать формулу. 
Площадь параллелограмма равна произведению прилежащих сторон на синус угла между ними, получается
S= sin \alpha * a * b
Далее, подставляем имеющиеся данные
S=[tex] \frac{1}{2}*12*20=120см²
Или можно через прямоугольный треугольник:
проводим высоту BK
∠BAD = 30°
Тогда сторона AB=12см, BC=20см
Рассмотрим прямоугольный ΔABK.
В прямоугольном треугольнике катет, лежащий напротив угла в 30° равен половине гипотенузы.
BK= \frac{1}{2} AB= \frac{1}{2} *12=6
Формула площади параллелограмма: S=ah (h-высота, a-основание, к которой проведена высота)
Высота h проведена к основанию AD, a AD=BC=20(противоположные стороны параллелограмма равны и параллельны)
S=AD*BK=20*6=120см²
Смежные стороны параллелограмма равны 12 см и 20 см, а один из его углов равен 30°. найдите площадь
mmihail146
Ну не умеют пользователи формулировать свои вопросы. 
"параллельные прямые могут быть не параллельными"
Все же в Геометрии Лобачевского  параллельные прямые- параллельны
Но они проходят через одну и ту же точку.

Попробую подробнее ответить  все же на этот вопрос
.
Если отвечать на вопрос - так как он задан- то ответ будет банальным: 
почему в Геометрия Лобачевского параллельные прямые могут быть не параллельными ( вернее сказать- если на плоскости лежат прямая и точка, то через эту точку можно провести хотя бы две прямые, не пересекающиеся с первой прямой)?  - потому что ОН так ЗАХОТЕЛ.

Но начнем по порядку...

В школах изучается геометрия, основы которой были заложены древнегреческими математиками. Ну это где то, примерно в 300 году до н. э. Евлид ( Это такой древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике) опубликовал свой труд под названием «Начала». 

В своем труде он собрал все геометрические сведения, полученные трудами многих математиков ( или точнее философов), живших до Евклида.
Не буду описывать его труд - достаточно сказать одно: его "Начала" достаточно подробно описывают пространство, в котором мы живем, благодаря чему эту геометрию (как и пространство) назвали Евклидовой.

Что же там такого особенного:
Там Есть некие аксиомы ( Это утверждения- которые не требуют доказательств). Таких аксиом (постулатов) 4. И они легко объясняются и не требуют доказательств. Но Евклид предложил и пятую аксиому- необходимость которой спорная.. Для построения геометрии она вроде бы и не нужна.

Что это за аксиома? 

Вот она: спорная Аксиома - или еще ее называют ПОСТУЛАТ, который звучит так:
"Если две прямые образуют с третьей по одну ее сторону внутренние углы, сумма которых меньше развернутого угла, то такие прямые пересекаются при достаточном продолжении с одной стороны"
 В современной формулировке она говорит о существовании не более одной прямой, проходящей через данную точку вне данной прямой и параллельной этой данной прямой.

И Вот Лобачевский и не согласился с пятым постулатом и предположил свою : если на плоскости лежат прямая и точка, то через эту точку можно провести хотя бы две прямые, не пересекающиеся с первой прямой ..

И Создал Свою Геометрию в основах которой лежат 4 постулата Евклида и 5 постулат Свой собственный..

Таким образом, чтобы Вы могли представить эту геометрию  попробую дать небольшие пояснения:
Геометрия Лобачевского описывает не плоское пространство, как это делает геометрия Евклида, работает  в гиперболическом пространстве. В геометрии Лобачевского пространство не плоско, оно имеет некоторую отрицательную кривизну. Представить это достаточно сложно, но хорошей моделью такого пространства являются геометрические тела, похожие на воронку и седло. И все сказанное выше относится именно к поверхностям этих фигур.

Вот как то так.. 

Для информации: 
не только Лобачевский "придумал свою геометрию"

Есть еще 
1) Сферическая геометрия - где  плоскость — это сфера, прямые — большие окружности, у которых центр совпадает с центром сферы. Отличается от евклидовой геометрии не только пятым постулатом (здесь вообще нет параллельных прямых), но и некоторыми другими. В этой геометрии сумма углов треугольника всегда больше 180˚ и существует треугольник, у которого все углы прямые. 
2) Абсолютная геометрия — геометрия, в которой вообще нет пятого постулата. Хороша тем, что утверждение, доказанное в ней, будет справедливо и для евклидовой геометрии, и для других.
3) Риманова геометрия — антипод геометрии Лобачевского. Здесь изменено больше постулатов. Так, нет порядка для трёх точек на прямой: есть лишь отношение «две точки разделяют две другие точки». Тоже достаточно важная штука, играет большую роль в современной дифференциальной геометрии. В качестве модели может служить евклидова плоскость, к которой добавили одну точку: типа «бесконечность», в которой пересекаются параллельные прямые.

И это не все... есть и другие.. Будет интересно.. можете изучить самостоятельно.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Угол между диагоналями прямоугольника равен 120 градусов. найдите угол между диагональю и большей стороной прямоугольника.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

yok887062
asyaurkova
Павел_Перелыгин
elvini857
федороа
djikia88
vorobyeva6428
Yevgeniya Bessonov
daverkieva568
golovins3
proplenkusale88
tihonovrv477
Скворцов
Olia72
tip36