Площадь треугольника можно вычислить как половину произведения двух сторон на синус угла между ними:
S=\frac{1}{2}ab*sin \alphaS=21ab∗sinα
1) а=2 см, b= 3 cм, α=30°
S=\frac{1}{2}*2*3*sin30^o=3*\frac{1}{2}=\frac{3}{2}=1.5S=21∗2∗3∗sin30o=3∗21=23=1.5
ответ: SΔ=1.5 cм².
2) а=2√(2dm), b= 5√(dm), α=45°
S=\frac{1}{2}*2\sqrt{2dm} *5\sqrt{dm} *sin45^o=\sqrt{2}*\sqrt{dm}*\sqrt{dm}*5*\frac{\sqrt{2}}{2}=\frac{5\sqrt{2}\sqrt{2}}{2}dm=5dmS=21∗22dm∗5dm∗sin45o=2∗dm∗dm∗5∗22=2522dm=5dm
ответ: SΔ=5dm кв.ед.
3) а=2 м, b=√3 м, α=90°
S=\frac{1}{2}*2*\sqrt{3}*sin90^o=\sqrt{3}*1=\sqrt{3}S=21∗2∗3∗sin90o=3∗1=3
ответ: SΔ=√3 м².
4) а=0,4 см; b=0,8 см; α=60°
S=\frac{1}{2}*0,4*0,8*sin60^o=0,2*0,8*\frac{\sqrt{3}}{2}=0,1*0,8*\sqrt{3}=0,08\sqrt{3}S=21∗0,4∗0,8∗sin60o=0,2∗0,8∗23=0,1∗0,8∗3=0,083
ответ: SΔ=0,08√3 см²
Площадь полной поверхности призмы равна сумме площадей двух её оснований и площади боковой поверхности.
Боковые грани прямой призмы - прямоугольники. Площадь боковой поверхности равна периметру основания, умноженному на высоту призмы.
S=P•h=(10+12+20)•3=126 (ед. площади)
Площадь основания - площадь трапеции АВСD.
Высота равнобедренной трапеции, проведенная из тупого угла, делит большее основание на отрезки, меньший из которых равен полуразности, больший - полусумме оснований.
АН=(АD-BC):2=8:2=4
НВ=(AD+DC):2=32:2=16
Из ∆ АВН по т.Пифагора ( или обратив внимание на то, что ∆ АВН - египетский) находим ВН=3
S осн=3•16=48 Оснований у призмы 2.
S полн=126+2•48=222 (ед. площади)
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь правильного шестиугольника вписанного в окружность радиус которой равен 2дм
S =6*((1/2)*2*(2*√3/2)) = 6√3 дм².
Можно воспользоваться готовой формулой площади шестиугольника в зависимости от радиуса описанной окружности:
дм².