Пусть дан прямоугольник АВСD, диагонали которого пересекаются в точке М. АВ = 7 см, АС = 12 см. Найдем периметр ΔАВМ.
Диагонали прямоугольника равны , а т.к. прямоугольник - это также и параллелограмм, то диагонали точкой пересечения делятся пополам, т.е. АМ = МС = ВМ = МD = АС : 2 = 12 : 2 = 6 (см). Тогда периметр ΔАВМ равен:
Р(ΔАВМ) = АВ + АМ + ВМ = 7 + 6 + 6 = 19 (см)
ответ: 19 см.
agaloan8
10.11.2022
Треугольник ABC, Медианы AA1, BB1 и CC1 пересекаются в точке O. Если продлить медиану AA1 за точку A1 (середину стороны BC) на расстояние, равное A1O, и полученную точку A2 (A1A2 = A1O) соединить с точками B и C, то фигура BOCA2 - параллелограмм (диагонали его делятся пополам в точке пересечения). Поэтому BA2 = CO. Таким образом, треугольник BOA2 имеет стороны, равные 2/3 от длин медиан (не важно, какая именно медиана равна 3, какая 4, и какая 5). Площадь этого треугольника BOA2 равна площади "египетского" треугольника со сторонами 3,4,5, умноженной на (2/3)^2; то есть Sboa2 = (3*4/2)*(4/9) = 8/3; С другой стороны, площадь этого треугольника равна 1/3 площади треугольника ABC, потому что медианы делят треугольник на шесть треугольников равной площади, а площадь треугольника BOA2 равна площади треугольника BOC - и там и там половина площади параллелограмма BOCA2. Поэтому площадь ABC равна 8.
inj-anastasia8
10.11.2022
Треугольник ABC, Медианы AA1, BB1 и CC1 пересекаются в точке O. Если продлить медиану AA1 за точку A1 (середину стороны BC) на расстояние, равное A1O, и полученную точку A2 (A1A2 = A1O) соединить с точками B и C, то фигура BOCA2 - параллелограмм (диагонали его делятся пополам в точке пересечения). Поэтому BA2 = CO. Таким образом, треугольник BOA2 имеет стороны, равные 2/3 от длин медиан (не важно, какая именно медиана равна 3, какая 4, и какая 5). Площадь этого треугольника BOA2 равна площади "египетского" треугольника со сторонами 3,4,5, умноженной на (2/3)^2; то есть Sboa2 = (3*4/2)*(4/9) = 8/3; С другой стороны, площадь этого треугольника равна 1/3 площади треугольника ABC, потому что медианы делят треугольник на шесть треугольников равной площади, а площадь треугольника BOA2 равна площади треугольника BOC - и там и там половина площади параллелограмма BOCA2. Поэтому площадь ABC равна 8.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Диагонали прямоугольника abcd пересекаются в точке m, ab=7, ac=12.найдите периметр треугольника abm.
См. рис. к задаче в приложении.
Пусть дан прямоугольник АВСD, диагонали которого пересекаются в точке М. АВ = 7 см, АС = 12 см. Найдем периметр ΔАВМ.
Диагонали прямоугольника равны , а т.к. прямоугольник - это также и параллелограмм, то диагонали точкой пересечения делятся пополам, т.е. АМ = МС = ВМ = МD = АС : 2 = 12 : 2 = 6 (см). Тогда периметр ΔАВМ равен:
Р(ΔАВМ) = АВ + АМ + ВМ = 7 + 6 + 6 = 19 (см)
ответ: 19 см.