Koranna1986
?>

Диагонали прямоугольника abcd пересекаются в точке m, ab=7, ac=12.найдите периметр треугольника abm.

Геометрия

Ответы

SitnikovYurii5

См. рис. к задаче в приложении.

Пусть дан прямоугольник АВСD, диагонали которого пересекаются в точке М. АВ = 7 см, АС = 12 см. Найдем периметр ΔАВМ.

Диагонали прямоугольника равны , а т.к. прямоугольник - это также и параллелограмм, то диагонали точкой пересечения делятся пополам, т.е. АМ = МС = ВМ = МD = АС : 2 = 12 : 2 = 6 (см). Тогда периметр ΔАВМ равен:

Р(ΔАВМ) = АВ + АМ + ВМ = 7 + 6 + 6 = 19 (см)

ответ: 19 см.


Диагонали прямоугольника abcd пересекаются в точке m,ab=7,ac=12.найдите периметр треугольника abm.
agaloan8
Треугольник ABC, Медианы AA1, BB1 и CC1 пересекаются в точке O. Если продлить медиану AA1 за точку A1 (середину стороны BC) на расстояние, равное A1O, и полученную точку A2 (A1A2 = A1O) соединить с точками B и C, то фигура BOCA2 - параллелограмм (диагонали его делятся пополам в точке пересечения). Поэтому BA2 = CO.
Таким образом, треугольник BOA2 имеет стороны, равные 2/3 от длин медиан (не важно, какая именно медиана равна 3, какая 4, и какая 5). Площадь этого треугольника BOA2 равна площади "египетского" треугольника со сторонами 3,4,5, умноженной на (2/3)^2; то есть Sboa2 = (3*4/2)*(4/9) = 8/3;
С другой стороны, площадь этого треугольника равна 1/3 площади треугольника ABC, потому что медианы делят треугольник на шесть треугольников равной площади, а площадь треугольника BOA2 равна площади треугольника BOC - и там и там половина площади параллелограмма BOCA2.
Поэтому площадь ABC равна 8.
inj-anastasia8
Треугольник ABC, Медианы AA1, BB1 и CC1 пересекаются в точке O. Если продлить медиану AA1 за точку A1 (середину стороны BC) на расстояние, равное A1O, и полученную точку A2 (A1A2 = A1O) соединить с точками B и C, то фигура BOCA2 - параллелограмм (диагонали его делятся пополам в точке пересечения). Поэтому BA2 = CO.
Таким образом, треугольник BOA2 имеет стороны, равные 2/3 от длин медиан (не важно, какая именно медиана равна 3, какая 4, и какая 5). Площадь этого треугольника BOA2 равна площади "египетского" треугольника со сторонами 3,4,5, умноженной на (2/3)^2; то есть Sboa2 = (3*4/2)*(4/9) = 8/3;
С другой стороны, площадь этого треугольника равна 1/3 площади треугольника ABC, потому что медианы делят треугольник на шесть треугольников равной площади, а площадь треугольника BOA2 равна площади треугольника BOC - и там и там половина площади параллелограмма BOCA2.
Поэтому площадь ABC равна 8.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Диагонали прямоугольника abcd пересекаются в точке m, ab=7, ac=12.найдите периметр треугольника abm.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

nrostovtseva142
Кононова-БЕСКРОВНАЯ
Решите уравнение x+11x=180​
Aleksandrovna Kolesnik1764
Shipoopi8
Chistov9721209
borisova-valeriya
Валентинович133
lele52
kseybar
Дил1779
Станислав Роман994
aaazovcev
rnimsk149
andrewa
vintazhvintazh90