РЕШЕНИЕ
в треугольнике
периметр P=16 см
высота h=4см
основание - a
боковая сторона - b
{ P=a+2b
{ h^2=b^2-(a/2)^2
решим систему
{ 16= a+2b
{ 4^2= b^2-(a/2)^2
после подстановки переменных
a= 6 см ; b=5 см
вершина прямоугольника разбивает боковою сторону на 2 отрезка
|с| и |b-c|=|5-c|
из подобия треугольников находим стороны прямоугольника
x=6/5*(5-c)
y=4/5*c
формула площади прямоугольника
S=xy= c*6/5(5-c)* 4/5*c=24/25*(5c-c^2)
производная дает МАКСИМУМ функции
S'=24/25*(5-2c) < приравняем к 0
24/25*(5-2c)=0 ; (5-2c)=0
с=2.5 > х=3 ; y=2
ОТВЕТ 2 ; 3 -размеры прямоугольника МАКСИМАЛЬНОЙ площади
1) находим гипотенузу за теоремой пифагора, AB=25.
есть формула нахождения высоты за тремя сторонами: Ha=2корень(p(p-a)(p-b)(p-c))/a
p=(a+b+c)/2
подставив в эту формулу данные, находим высоту 12, она есть диаметром, значит r=12/2=6
длина окружности=2пr=12п
2)Sквадрата=a^2 a=корень из S
r вписанной окружности для квадрата = a/2
r=S^2/2 длина=2пr=S^2п
нарисуй квадрат и вписанный в него круг, точками касания будут середины сторон квадрата, берем те, которые на соседних сторонах и отмечаем эту дугу. угол, на которую она опирается - прямой. это видно по рисунку
90*=п/2 длина дуги=r*альфа=S^2/2*п/2=пS^2/4
площадь вне окружности можно найти отняв от площади квадрата площадь окружности. Sокружности=пr^2=(S^4п)/4 S вне окружности=S-(S^4п)/4
Поделитесь своими знаниями, ответьте на вопрос:
Одна сторона параллелограмма в 3 раза больше другой а его периметр равен 40 см.найдите стороны параллелограмма.
40-10=30 - сумма двух сторон парралеограма, которые больше других в три раза.
10:2=5 - одна сторона парралеограма
30::2=15 - другая сторона парралеограма