вот вам рисунок
Решение очень простое - вся "хитрость" в том, что угол О1АО2 (между пунктирными прямыми) равен 90 градусам. Дело в том, что О1А и О2А - биссеткриссы смежных углов (почему биссектрисы, - это понятно? обоснуйте), а сумма смежных углов 180 градусов. Ну, сумма половин смежных углов (то есть сумма угла О1АВ и угла О2АВ) дает 90.
Таким образом, трегольник О1АО2 - прямоугольный, и АВ - высота к гипотенузе.
Дальше - очень полезное "заклинание" - хотя и очень простое.
Высота к гипотенузе делит прямоугольный треугольник на два, подобные ему - и между собой тоже, конечно.
Поэтому
О1B/АВ = АВ/О2В;
О1B = АВ^2/O2B = 6^2/4 = 9;
Нехай маємо прямокутний трикутник ABC (∠C=90), у якого AC=√5 см – катет і BH=4 см – проекція катета BC на гіпотенузу AB (за умовою).
прямокутний трикутник, рисунок Проведемо висоту CH=h до гіпотенузи AB (AB⊥CH).
За властивістю прямокутного трикутника
h^2= AH•BH
(це виводиться із подібності прямокутних трикутників ABC і CBH).
Нехай AH=x - проекція катета AC на гіпотенузу AB, тоді h^2=4x.
У прямокутному ΔACH (∠AHC=90), у якого AH=x і CH=h=2√x – катети, AC=√5 см – гіпотенуза, за теоремою Піфагора запишемо:
AH^2+CH^2=AC^2, x^2+4x=5, x^2+4x-5=0,
за теоремою Вієта, отримаємо
x1=1 і x2=-5<0, звідси AH=1 см.
AB=AH+BH=1+4=5 см – гіпотенуза ΔABC.
Відповідь: 5.
Поделитесь своими знаниями, ответьте на вопрос:
Решить .угол между диагоналями параллелограмма abcd ac=2корня из2 и bd=2 равен 45.чему равен угол а?
т.к. диагонали,точкой параллелограмма точкой пересечения делятся по палам,то ВО=ОД=7
АО=ОС=10
Рассомтрим треугольник АВО
в нем нам известно 2 стороны и угол между ними,можем найти АВ-3 сторону,по теореме косинусов (косинус 60=1/2)
АВ^2=ВО^2+АО^2-2*АО*ВО*косинус 60
АВ^=2корня из 19АВ=СД=2корня из 19Рассмотрим треугольник АОД,нам известно АО=10,ДО=7,косинус угла между ними 120,считаем все так же по теореме косинусов,но перед этим заменим косинус 120=косинус(180-60)=косинус 60=1/2
АД=2 корня из 19=ВСР=8корней из 19