Соединим середины сторон четырехугольника.
Полученные отрезки параллельны диагоналям и равны их половинам, так как являются средними линиями в соответствующих треугольниках.
Отрезки образуют параллелограмм Вариньона.
Площадь четырехугольника Sч =1/2 d₁d₂ sinф
Угол ф между диагоналями четырехугольника равен углу между сторонами пар-ма Вариньона (т.к. они параллельны).
Площадь пар-ма Вариньона Sв =d₁/2 *d₂/2 *sinф =1/2 Sч
Итак, площадь пар-ма Вариньона равна половине площади четырехугольника.
В данном четырехугольнике диагонали равны, следовательно стороны пар-ма Вариньона равны и он является ромбом.
Диагонали ромба перпендикулярны, sin90=1.
Sч =2 Sв =2 *1/2 *14*8 =112
Стороны треугольника 13ед. 14ед. и 15ед.
Объяснение:
Нам дано, что стороны треугольника равны Хед, (Х+1)ед и (Х+2)ед.
В треугольнике против большего угла лежит большая сторона (свойство треугольника). Значит наша биссектриса делит большую сторону (Х+2) на отрезки, меньший из которых равен (65/9) ед (дано). Тогда больший отрезок равен (Х+2) - 65/9 = (9Х-47)/9 ед.
По свойству биссектрисы треугольника она делит противоположную сторону на отрезки пропорционально прилегающим сторонам, то есть
(65/9):(9Х-47/9) = Х:(Х+1). => 65Х+65 = х(9Х-47). =>
9X² - 112X - 65 = 0. Решаем квадратное уравнение и получаем:
Х = 13ед. (Второй корень отрицательный и не удовлетворяет условию задачи). Тогда стороны треугольника равны
13ед. 14ед. и 15ед.
Поделитесь своими знаниями, ответьте на вопрос:
(вроде так)