Дано: с=2 а,в-? Решение: 1. Пусть а=х, тогда в=2х 2. По теореме Пифагора с^2=а^2+в^2 4=х^2+4х^2 4=5х^2 х^2=0,8 х=√0,8 3. 2х=2√0,8 ответ: √0,8 и 2√0,8
BirUlek215
30.06.2022
Перпендикуляр OM образовывает прямоугольные треугольники AMO и BMO. Для них верно, из теоремы Пифагора: AO^2 = OM^2 + 3^2 BO^2 = OM^2 + 12^2 Но при этом для большого прямоугольного треугольника ABO верно: 15^2 = AO^2 + BO^2 Сложим два первых выражения: AO^2 + BO^2 = 2*OM^2 + 9 + 144 = 2*OM^2 + 153 И приравняем со вторым: 225 = 2*OM^2 + 153 2*OM^2 = 225 - 153 = 72 OM^2 = 36 OM = 6 Теперь подставим в первое выражение и найдём половинки диагоналей, т.е. AO и BO: AO^2 = 36 + 9 = 45 AO = = 3* BO^2 = 36 + 144 = 180 BO = = 6* Площадь ромба равна половине произведения диагоналей. Не забываем, что мы нашли половинки диагоналей, т.е.: S = 1/2 * 2*AO * 2*BO = 2*AO*BO = 2 * 3* * 6* = 36 * 5 = 180 см^2
myataplatinumb348
30.06.2022
Перпендикуляр OM образовывает прямоугольные треугольники AMO и BMO. Для них верно, из теоремы Пифагора: AO^2 = OM^2 + 3^2 BO^2 = OM^2 + 12^2 Но при этом для большого прямоугольного треугольника ABO верно: 15^2 = AO^2 + BO^2 Сложим два первых выражения: AO^2 + BO^2 = 2*OM^2 + 9 + 144 = 2*OM^2 + 153 И приравняем со вторым: 225 = 2*OM^2 + 153 2*OM^2 = 225 - 153 = 72 OM^2 = 36 OM = 6 Теперь подставим в первое выражение и найдём половинки диагоналей, т.е. AO и BO: AO^2 = 36 + 9 = 45 AO = = 3* BO^2 = 36 + 144 = 180 BO = = 6* Площадь ромба равна половине произведения диагоналей. Не забываем, что мы нашли половинки диагоналей, т.е.: S = 1/2 * 2*AO * 2*BO = 2*AO*BO = 2 * 3* * 6* = 36 * 5 = 180 см^2
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите стороны прямоугольного треугольника, если: гипотенуза равна 2, а один из катетов в два раза больше другого
с=2
а,в-?
Решение:
1. Пусть а=х, тогда в=2х
2. По теореме Пифагора
с^2=а^2+в^2
4=х^2+4х^2
4=5х^2
х^2=0,8
х=√0,8
3. 2х=2√0,8
ответ: √0,8 и 2√0,8