Буду .. известно, что в треугольнике abc выполнено ab=bc и ab: ac=5: 6. точка o — центр вписанной в треугольник окружности. найдите bo, если радиус вписанной окружности равен 3.
Пусть данный катет АС, угол - А На произвольной прямой m отложим отрезок, равный длине катета АС. Обозначим его концы А и С. На сторонах заданного угла А циркулем радиуса=АС с центром в т.А сделаем насечки. Обозначим их О и М. Соединим О и М. Из т. А построенного на m катета проведем тем же раствором циркуля полуокружность. Циркулем измерим ОМ и из т.С отложим полуокружность до пересечения с первой в т.К. АС=АМ, АК=АО, отрезок СК равен отрезку ОМ, ⇒ ∆ АКС=∆ АОМ. Следовательно, угол КАС равен заданному. Катет и прилежащий к нему угол построены. На равном расстоянии по обе стороны от С отметим на прямой m т.1 и т.2. Из этих точек, как из центров, начертим полуокружности так, чтобы они пересеклись по обе стороны от прямой m. Точки пересечения соединим. Построен перпендикуляр к прямой m через т. С ( это стандартный построения перпендикуляра, и он наверняка Вам знаком). Точку пересечения перпендикуляра с другой стороной угла А обозначим В. Искомый треугольник АВС по катету АС и прилежащему углу А построен.
vladimir72tatarkov1317
10.03.2020
Соединив данную точку с вершинами треугольника, получим треугольную пирамиду с равными (это вытекает из условия) рёбрами. Но тогда будут равны и их проекции на плоскость треугольника и на плоскость, перпендикулярную плоскости треугольника. Так как вторые проекции лежат на прямых, проходящих через вершину пирамиды и пересекающих плоскость треугольника в одной точке (равноудалённой от вершин треугольника), то эти проекции совпадают). Но по условию через вершину пирамиды и данную точку проходит и данная в условии прямая. А это значит, что она совпадает с проекцией рёбер пирамиды на плоскость, перпендикулярную плоскости треугольника. Но эта проекция, а вместе сней и данная прямая, перпендикулярна плоскости треугольника.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Буду .. известно, что в треугольнике abc выполнено ab=bc и ab: ac=5: 6. точка o — центр вписанной в треугольник окружности. найдите bo, если радиус вписанной окружности равен 3.
ответ: 5.
Объяснение: