Сайжанов
?>

Дакажи те что если в выпуклом четырёх угольнике суммы

Геометрия

Ответы

qwe54344
Решение задачи:

решение
пусть в выпуклом четырехугольнике abcd
ав + cd =вс +ad. (1)
точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.

предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон

но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:

правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству

т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать. 
Mikhailova
1) если 2 угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
2)если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами , равны, то такие треугольники подобны.
3)если три стороны одного треугольника пропорциональны трем сторонам другого, то таки треугольники подобны.
4) средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
5) прямая, имеющая с окружностью только одну общую точку, называться касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
6)касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
7) угол с вершиной в центре окружности называется ее центральным углом.
8) угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом.
9) прямую, проходящую через середину отрезка перпендикулярно к нему.
Chutaeva381
1) В прямоугольном треугольнике АВС <C=90°, <B=60° и <A=30° (90°-60°). Найти надо катет АС (против <60°). Тогда гипотенуза АВ=2*СВ (катет СВ лежит против угла 30°).  По Пифагору АС=√(4СВ²-СВ²)=СВ√3. Площадь тр-ка АВС = (1/2)* АС*СВ = СВ²√3/2 = 50√3/3. Отсюда СВ²=50*2/3, а СВ = √(100/3)=10/√3. Но АС=СВ√3 (смотри выше). Мтак, искомый катет АС = (10/√3)*√3 = 10.
2) Касательные к окружности с центром 0 в точках A и B пересекаются под углом 72 градуса. найдите угол ABO. То есть касательные пересекаются под углом 72° (предположим, в точке С). Точки касания - А и В. Центр О. Значит в четырехугольнике ОАСВ угол АОВ=108°. Треугольник ОАВ равнобедренный, так как АО и ВО - радиусы. Тогда исклмый угол АВО = (180°-108°):2 = 36°

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дакажи те что если в выпуклом четырёх угольнике суммы
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

manager9
nsmirnova
shabaev19542355
NurlanAleksandrovich
lazareva
Prostofil200790
azarov8906
Anna389
korotinadasha07
Fedoseeva
Taurus59707
Vadim443
sorokinae
verkop9
arteevdimon