zibuxin6
?>

очень нужно, мне два поставят

Геометрия

Ответы

nadezhda81
1) Чтобы треугольник был равнобедренным, две стороны должны быть равны, то есть расстояния между точками должны быть равными
A(-6;1)   B(2;4)   C(2;-2)
AB= \sqrt{(X_B-X_A)^2+(Y_B-Y_A)^2}= \\ \\ =\sqrt{(2+6)^2+(4-1)^2} = \sqrt{64+9} =\sqrt{73} \\ \\ AC= \sqrt{(X_C-X_A)^2+(Y_C-Y_A)^2}= \\ \\ =\sqrt{(2+6)^2+(-2-1)^2} = \sqrt{64+9}= \sqrt{73} \\ \\ CB= \sqrt{(X_B-X_C)^2+(Y_B-Y_C)^2}= \\ \\ =\sqrt{(2-2)^2+(4+2)^2} = \sqrt{36} =6
AB = AC  ⇒ ΔABC - равнобедренный

2) ΔABC :    AB=AC=√73;  BC=6 .
В прямоугольном треугольнике равными могут быть только катеты. Самая длинная сторона - гипотенуза - не может быть равна катетам. 
BC=6 < AB=AC=√73  ⇒  ΔABC не является прямоугольным

3) BK - медиана  ⇒  AK = KC.  Координаты точки K
X_K= \frac{X_A+X_C}{2} = \frac{-6+2}{2} =-2 \\ \\ Y_K= \frac{Y_A+Y_C}{2} = \frac{1-2}{2} =-0,5
 B(2;4)   K(-2; -0,5)
BK = \sqrt{(X_K-X_B)^2+(Y_K-Y_B)^2} = \\ \\ = \sqrt{(-2-2)^2+(-0,5-4)^2}= \sqrt{16+20,25} = \sqrt{36,25}
BK = √36,25 ≈ 6,02

P.S. Тема: координатная плоскость, координаты точек, расстояние между точками
Даны координаты вершин треугольника abc a(-6; 1) b(2; 4) c(2; -2) докажите, что треугольник abc равн
Yelizaveta1848

РЕШЕНИЕ

сделаем построение поусловию

основания  a=8.2   b=14.2

по теореме Фалеса

прямая, которая делит диагонали пополам -также будет делить пополам боковые стороны 

на этой же прямой лежит средняя линия трапеции L=(a+b)/2

на верхнем основаниии можно построить  ДВА треугольника

1-ый  с вершиной в нижнем левом углу трапеции L1=a/2

2-ой  с вершиной в нижнем правом углу трапеции L2=a/2

среднии  линии этих треугольников также лежат на средней линии трапеции

тогда расстояние между серединами ее диагоналей  

d=L-L1-L2=(a+b)/2 -a/2-a/2=( (a+b) -2a) /2 =(b-a)/2 =(14.2-8.2)/2=6/2=3 см

ОТВЕТ  3 см


Основания трапеции равны 8,2 см и 14,2 см.найдите расстояние между серединами ее диагоналей ну !

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

очень нужно, мне два поставят
Ваше имя (никнейм)*
Email*
Комментарий*