(см. объяснение)
Объяснение:
Первый
Пусть ∠ECB=a. Тогда, т.к. ∠ACB=90°, то . Соответственно
. Значит треугольник AHC подобен треугольнику BEC по двум углам (∠AHC=∠BEC=90° и ∠ECB=∠HAC=
). Из подобия следует, что
. Тогда по теореме Пифагора для ΔABC:
.
Приведу решение, в котором используется только теорема Пифагора:
Пусть AC=x. AH=3, а BE=8. Тогда из прямоугольного треугольника AHC . Из прямоугольного треугольника BCE
. Значит
. Проведем AF - высоту из точки A на BE. Тогда AFEH - прямоугольник =>
. По теореме Пифагора для прямоугольного треугольника AFB
. Но с другой стороны из прямоугольного треугольника ABC
, т.е. получили уравнение
, откуда x=5, а значит
. Тогда
.
Задача решена!
Поделитесь своими знаниями, ответьте на вопрос:
1.обоснуйте равенство отрезков соединяющих середины противоположных сторон ромба 2.постройте параллелограмм по двум смежным сторонам если высота проведенная из вершины тупого угла делит противоположную сторону пополам 3.постройте треугольник периметр которого составляет половину периметр данного треугольника
ответ:Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.
Объяснение:Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.