5²=x²+4²-2·x·4·cos45° x²-4√2· x-9=0 D=(4√2)²-4·(-9)=32+36=68 √68=2√17 x₁=(4√2+2√17)/2=2√2+√17 или х₂=(4√2-2√17)/2=2√2-√17<0 не удовлетворяет условию задачи
ответ. СD=2√2+√17
uuks2012
22.05.2020
Строим треуг АВС. Из точки В проводим перпендикуляр ВD. Соединяем AD и CD. Получили пирамиду, BD-перпендикуляр к основанию АВС. Грани ABD и CBD являются прямоугольными треуг-ми. У треуг. ABD и CBD катет DB-общий, катеты АВ=ВС по условию, значит треуг-ки ABD=CBD по двум катетам, тогда AD=CD, следовательно треуг. ADC равнобедренный. Найдем AD^2=АВ^2+DB^2=625+15=640DO-высота, проведенная к основанию АС, ана же и медиана и искомое расстояние от точки D до прямой АС.Так как DO медиана, то АО=48/2=24смDO=√(AD^2-AO^2)=√(640-576)=8смответ 8см
nekataniyoleg
22.05.2020
Если провести диаметр OY (это я его так обозначил, чтобы как-то потом называть), параллельно CD и перпендикулярно (само собой) AB, то он пройдет через середину AB, то есть точки A и B симметричны относительно OY; Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр. Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим). Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике cde сторона de=5, ce=4, угол c=45.найти cd-?
DE²=CD²+CE²-2·CD·CE·cos∠C
Обозначим СD=x
5²=x²+4²-2·x·4·cos45°
x²-4√2· x-9=0
D=(4√2)²-4·(-9)=32+36=68
√68=2√17
x₁=(4√2+2√17)/2=2√2+√17
или
х₂=(4√2-2√17)/2=2√2-√17<0 не удовлетворяет условию задачи
ответ. СD=2√2+√17