Дан ромб ABCD; AB=5см; AC+BD=18см.
Найти S(ABCD).
Диагонали ромба перпендикулярны и делятся точкой пересечения пополам. Пусть AC∩BD=O.
AO+BO = AC:2+BD:2 = (AC+BD):2 = 18см:2 = 14см
ΔABO - прямоугольный (∠O=90°). Пусть AO=x см, тогда BO=14-х см
По теореме Пифагора:
AO²+BO² = AB² ⇒ x²+(14-x)²=100²
2x²-28x+96 = 0; x²-14x+48 = 0; x(x-8)-6(x-8) = 0; (x-8)(x-6) = 0
x=6 или x=8
Если AO=6см, то ВО=8см, АС=12см, BD=16см
Если АО=8см, то ВО=6см, АС=16см, BD=12см
Получается ABCD это ромб с диагоналями, равными 16см и 12см.
Площадь ромба равна полупроизведению его диагоналей.
S(ABCD) = = 16·12:2 см² = 8·12 см² = 96см²
ответ: 96см².
Объяснение:
Сделаем рисунок к задаче.
Высота этой трапеции отсекает от нее прямоугольный равнобедренный треугольник с гипотенузой 3√2.
Такой треугольник - половина квадрата с диагональю=гипотенузе.
Формула диагонали квадрата ( формула гипотенузы равнобедренного прямоугольного тр-ка).
d=а√2, где а- сторона квадрата, а в равнобедренном прямоугольном треугольнике - катет. Знание этой формулы часто избавляет от лишних вычислений.
d=СК
СК =3√2=СН√2
СН√2=3√2
СН=3 см
СН=НК как равный катет.
АК=2НК
ВС=АК:2
Площадь трапеции равна Н*(АВ+ВС)
S=3*(3+6):2=13,5 см²
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольнике авсд биссектриса угла в пересекает сторону ад в точке к.найдите длину вм треугольника авк, если сд=8см
Биссектриса ВК делит прямой угол пополам, ∠АВК=45°
Сумма острых углов прямоугольного треугольника равна 90°.
Значит и второй острый угол прямоугольного треугольника АВК
∠ВКА=45°
Треугольник АВК- равнобедренный прямоугольный
АВ=АК=8
По теореме Пифагора ВК²=8²+8²
ВК=8√2 см