НиколаевнаОльга
?>

Точки м и n лежат на стороне ас треугольника авс на расстояниях соответственно 8 и 30 от вершины а. найдите радиус окружности, проходящей через точки м и n. и касающейся луча ав, если cos(bac)=√15/4

Геометрия

Ответы

Ye.Vadim
Обозначим:
- точку касания окружностью стороны АВ точкой К,
- точки пересечения осью окружности, перпендикулярной стороне АС, со стороной АС за точку Р, со стороной АВ за точку Е.
Центр О окружности лежит на перпендикуляре, проведенном к середине отрезка MN.
Отрезок АР = 8+((30-8)/2) = 8 + 11 = 19.

Решение основано на теореме касательной и секущей.
 Касательная АК=√(8*30)=√240 =  15.49193.
 Отрезок касательной КЕ (до оси окружности) равен АЕ-АК= 19 / cosA- 15.49193 = 19 /  0.968246 -15.49193 =  19.62312 - 15.4919 =  4.131182.
Радиус равен этой величине, делённой на тангенс угла КОЕ (он равен углу А). 
Тангенс угла КОЕ равен:
tg KOE = tg(A) = sin(A) / cos(A) = √(1-cos²(A)) / cos(A) =
= √(1 - (15/16)) / (√15/4) = (1/4) / (√15/4) = 1/√15 =  0.258199.
Тогда R = 4.131182 /  0.258199 = 16.
volkovaekaterina303
Треугольная пирамида, все боковые ребра равны, => высота пирамиды проектируется в центр описанной около треугольника (основания пирамиды) окружности.
радиус описанной около произвольного  треугольника окружности вычисляется по формуле:
R= \frac{AB}{2sin\ \textless \ C} = \frac{BC}{2sin\ \textless \ A}= \frac{AC}{2sin\ \textless \ B}
AC=1, BC=2, <C=60°. AB=?
по теореме косинусов:
AB²=AC²+BC²-2*AC*Bc*cos<C
AB²=1²+2²-2*1*2*cos60°
AB²=3,  AB=√3

прямоугольный треугольник:
гипотенуза с=√13 - боковое ребро пирамиды
катет а=√3 радиус описанной около треугольника окружности
катет Н -высота пирамиды, найти по теореме Пифагора:
c²=a²+H², H²=(√13)²-(√3)². H=√10
V= \frac{1}{3} * S_{osn} *H&#10;&#10; S_{osn} = \frac{1*2}{2} *sin60 ^{0} = \frac{ \sqrt{3} }{2}
V= \frac{1}{3} * \frac{ \sqrt{3} }{2}* \sqrt{10} = \frac{ \sqrt{30} }{6}
semenov-1970
 bc=b1c1, и am, a1m1 - медианы, то
bm=cm=b1m1=c1m1.
Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам:
- ab=a1b1 по условию;
- am=a1m1 по условию;
- bm=b1m1 как только что доказано.
У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы amc и a1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой.
Треугольники amc и a1m1c1 будут равны по двум сторонам и углу между ними:
- am=a1m1 по условию;
- сm=c1m1 как было показано выше;
- углы amc и a1m1c1 равны как доказано выше.
У равных треугольников amc и a1m1c1 равны соответственные стороны ac и a1c1.
Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам. 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Точки м и n лежат на стороне ас треугольника авс на расстояниях соответственно 8 и 30 от вершины а. найдите радиус окружности, проходящей через точки м и n. и касающейся луча ав, если cos(bac)=√15/4
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

rina394992
DVOct33
kristinmk
sisychev
Maksim Lokhov
myrisik2490
mgg64
Alisa
Nertman45
Егоркина
coalajk
RozaAsadullina
nikv568734
sawa-msk
Vladimirovich1898