Сунус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе:
sin∠A = BC : AB = 8/10 = 0,8
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему:
tg∠B = AC : BC = 6/8 = 3/4 = 0,75
kirillprotopopov1
16.03.2020
Будем считать, что условие я, всё-таки, понял правильно.... Смотрим рисунок: В прямоугольном Δ-ке середина гипотенузы (на рисунке - О) есть центр описанной окружности, значит ОА=ОС=ОВ Если прямой угол делится в отношении 1:2, то ∠АСО=30°, ∠ОСВ=60° Т.к. ОС=ОВ, то ΔСОВ - равнобедренный, ∠ОСВ=∠ОВС=60°, но тогда также ∠СОВ=60°, таким образом, ΔСОВ не только равнобедренный, но и раносторонний: ОС=ОВ=ВС=10 см ∠САВ=30°, значит гипотенуза АВ=2ВС=20 см Меньшая средняя линия равна половине меньшей стороны: ОМ=ВС/2=5 см
tarasowamash4
16.03.2020
АВС - треугольник С =90 град СК - медиана (АК+КВ) уг КСВ : уг. АСК = 1 : 2 Обозначим через х коэфф.пропорции и составим уравение х+2х=90 3х=90 х=30 Следовательно, КСВ=30 град АСК= 60 град Наименьшая сторона лежим против меньшего угла. Рассмотрим треугольник СКМ (КМ перпендикулярна СВ и делит СВ пополам, то есть является средней линией треугольника. Треугольник КСМ прямоугольный. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. СК - гипотенуза, СК=10 см (по условию). Значит КМ=5 см Медиана прямоугольного треугольника, проведенная из вершины прямого угла равна половине гипотенузы. Значит, гипотенуза АВ= 2*10=20 см
Найдем гипотенузу АВ по теореме Пифагора:
АВ² = АС²+ ВС² = 6² + 8² = 36 + 64 = 100
АВ = 10 см
Сунус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе:
sin∠A = BC : AB = 8/10 = 0,8
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему:
tg∠B = AC : BC = 6/8 = 3/4 = 0,75