Площадь равнобедренного треугольника определяем по формуле Герона Т.к. две стороны равны, то . Умножаем на 4 и получаем площадь поверхности пирамиды.
nikziam
28.07.2020
Так как искомая окружность должна касаться хорды АВ данной нам окружности радиуса R=15 и самой этой окружности, ясно, что искомая окружность расположена внутри кругового сегмента, стягиваемого хордой АВ. Поскольку хорда АВ делит круг на два круговых сегмента, существует и два варианта решения. На рисунке представлены оба варианта расположения искомой окружности. Точка касания "С" этой окружности с хордой АВ определена. Проведем радиус r=O1C искомой окружности в точку касания. Этот радиус О1С перпендикулярен хорде АВ. Проведем радиус R=ОР данной нам окружности к хорде АВ . Он также перпендикулярен хорде АВ и, кроме того, делит ее пополам в точке М. Тогда АМ=0,5АВ=12, АС=АВ/3=8. СМ=12-8=4. Опустим из центра искомой окружности перпендикуляр на диаметр КР, включающий в себя радиус R. О1М1=СМ=4. Из прямоугольного треугольника ОАМ по Пифагору найдем отрезок ОМ. ОМ=√(АО²-АМ²)=√(15²-12²)=9. В прямоугольнике М1О1СМ сторона ММ1=r, где r - радиус искомой окружности. Тогда для первого варианта (окружность расположена в большем секторе): ОМ1=ММ1-ОМ = r-9. ОО1=R-r. (Так как оба радиуса лежат на одной прямой - радиуса в точку касания Т обеих окружностей). И из прямоугольного треугольника М1О1О по Пифагору имеем: ОО1²=О1М1²+М1О² или (15-r)²=4²+(r-9)² или 225-30r+r²=16+r²-18r+81. Отсюда r=32/3. Для второго варианта (окружность расположена в меньшем секторе): ОМ1=ММ1+ОМ = r+9. И ОО1²=(15-r)²=4²+(r+9)² или 225-30r+r²=16+r²+18r+81. Отсюда r=8/3.
Yekaterina358
28.07.2020
Рассмотрим треугольник DAB и треугольник CBD. Найдем соотношение их соответствующих сторон: DA/CB=AB/BD=DB/CD 6/8=9/12=12/16, сократим дроби: 3/4=3/4=3/4. Получили, что стороны этих треугольников пропорциональны, значит треугольники подобны. У подобных треугольников соответствующие углы равны, значит угол ADB равен углу DBС. Но для прямых AD, BC и секущей BD – это накрест лежащие углы, а значит AD параллельна BC. AB не параллельна CD, так как если бы они были параллельны, то мы получили бы параллелограмм, а у него противолежащие стороны равны, что противоречит условию задачи. Значит наш четырехугольник – трапеция.