Ромб - стороны равны, противоположные углы равны, диагонали перпендикулярны.
Треугольники ABE и CBF равны по гипотенузе и острому углу, AE=CF.
Точки E и F делят стороны ромба в равном отношении => AC||EF => EF⊥BD
S(ABO) =1/4 S(ABCD) =1/4 *1/2 *160*120 =2400
AB =√(AO^2 +BO^2) =100
∠ABD=∠ADB => △ABO~△BDE
BE/AO =BD/AB => BE =80*120/100 =96
△BEG~△BMO~△BDE => △BEG~△BMO~△ABO
S(BEG)/S(ABO) =(BE/AB)^2 =(96/100)^2 =0,96^2
S(BMO)/S(ABO) =(BO/AO)^2 =(60/80)^2 =0,75^2
S(MOGE) =S(BEG)-S(BMO) =2400 (0,96^2 -0,75^2) =861,84
S(MNFE) =2 S(MOGE) =1723,68
1)Если углы смежные, то их сумма равна 180 градусов. Пусть х(градусов)-1 угол, тогда 2 угол 3х(градусов), получим уравнение:
х+3х=180,
4х=180,
х=45
45(градусов)-1 угол, 45*3=135(градусов)-2 угол.
2)Пусть 1 часть угла равна х(градусов), тогда 1 угол 4х(град), 2 угол 5х(град), а их сумма 180, имеем:
4х+5х=180
9х=180
х=20
20*4=80(град)-1 угол
20*5=100(град)-2 угол
3) Пусть угол ВСД-х(град), тогда угол АСД-4х(град), т.к. углы смежные, то их сумма 180(град). Имеем уравнение:
х+4х=180
5х=180,
х=36
36(град)-угол ВСД
36*4=144(град)-угол АСД
Поделитесь своими знаниями, ответьте на вопрос:
Концы отрезка ав длиной 6 см удалены от плоскости на расстоянии 5 см и 3 см. найдите: 1) проекцию прямой ав на плоскость; 2) угол между прямой ав и плоскостью.
Угол между прямой АВ и плоскостью: 2/6=sinα.
α=arcsin(1/3)