Чертим пирамиду, диагонали основания (АС) и (ВС), высотупирамиды (SO). О-точка пересечения (АС) и (ВС) и центр квадрата АВСD. треугольник ASC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2), АО=ОС=OS=sqrt(2)/2.
Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высртами этих треугольников и равны sqrt(3)/2. Проведём сечение через вершину пирамиды S и середины рёбер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью SAD равен углу между AB и SM, значит равекн углу между SM и NM или углу SMO.
Из треугольника SOM получаем : cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)/3
Точка F - точка пересечения биссектрисы угла при основании и высоты BD, H - точка пересечения медиан и делятся этой точкой на две части в отношении 2:1, считая от вершины.
HD = 5 см, следовательно BH = 2 * 5 = 10 см. Высота равнобедренного треугольника BD = 5 + 10 = 15 см.
Из условия BF/FD = 5/4 , пусть BF = 5x, тогда FD = 4x. Тогда по свойству биссектрисы для треугольника ABD
AB/AD = BF/FD = 5/4 ⇒ AB = 5y и AD = 4y
По теореме Пифагора из прямоугольного треугольника ABD
25y² = 16y² + 15²
9y² = 225
y = 5
Следовательно, AB = BC = 25 см и AC = 2*AD = 40 см.
Периметр ΔABC: P = AB + BC + AC = 25+25+40 = 90 см
ответ: 90 см.
Поделитесь своими знаниями, ответьте на вопрос:
Стороны треугольника пропорциональны числам 2, 5, 6.какими будут стороны подобного ему треугольника с периметром 72, 8см
коэффициент подобия 72,8:13=5,6
2*5,6=11,2 -первая сторона
5*5,6=28 -вторая
6*5,6=33,6 -третья