Mikhailovna1444
?>

Периметры двух подобных треугольников 18 и 36, а сумма их площадей равна 30. найти площадь большего треугольника

Геометрия

Ответы

aggeeva

p₁=p₂=k

p - периметр треугольника

k - коэффициент подобия

s₁=s₂=k²

s  - площадь трегольника

k - коэффициент подобия

 

36/18=2

k=2

 

решим мистему:

s₁/s₂=4

s₁+s₂=30

 

s₁=4s₂

4s₂+s₂=30

5s₂=30

s₂=6

s₁=30-6=24

 

площадь большего треугольника равна 24

 

Рафаэль633

Определить радиус окружности, определённой уравнением x^2+y^2-4x-6y-3=0.

ответ:

Радиус окружности равен 4 условных единицы.

Объяснение:

Для начала вспомним общий вид уравнения окружности:

\Large \boldsymbol {} \text{ $ \boldsymbol{\sf \star \ (x-x_0)^2+(y-y_0)^2=r^2}$ \boldsymbol}

где (x₀;y₀) - координаты центра окружности, r - её радиус.

Мы имеем уравнение окружности. Чтобы найти радиус, нам нужно сделать два полных квадрата в этом уравнении по формулам квадратов разности либо суммы:

\Large \boldsymbol {} \text{ $ \boldsymbol{\sf \star \ (a+b)^2=a^2+2ab+b^2}$ \boldsymbol}  \text{ $ \boldsymbol{\sf \star \ (a-b)^2=a^2-2ab+b^2}$ \boldsymbo}

Распишем уравнение окружности по этим формулам:

\Large \boldsymbol {} (x-x_0)^2+(y-y_0)^2=r^2x^2-2xx_0+(x_0)^2+y^2-2yy_0+(y_0)^2=r^2

В нашей формуле окружности мы имеем x^2 и y^2, а так же 4x и (-6у). Не сложно догадаться, что (-4х) это и есть то самое (-2хх₀), а (-6у) это (-2уу₀). Отсюда находим координаты середины окружности:

\Large \boldsymbol {} -2yy_0=-6y \Longrightarrow y_0=3-2xx_0=4x \Longrightarrow x_0=(-2)

Мы нашли координаты центра нашей окружности - (-2;3).

Теперь нам нужно сделать так, чтобы в нашем уравнении окружности было всё, чтобы сделать там полные квадраты - (х+2)^2 и (y-3)^2.

\Large \boldsymbol {} x^2+y^2+4x-6y-3=0 x^2+y^2+4x-6y+4-4+9-9=3(\underset{a^2}{\underbrace{x^2}}-\underset{2ab}{\underbrace{2*(-2)*x}}+\underset{b^2}{\underbrace{(-2)^2}})+(\underset{a^2}{\underbrace{y^2}}-\underset{2ab}{\underbrace{2*3*y}}+\underset{b^2}{\underbrace{3^2}})--4-9-3=0(x-(-2))^2+(y-3)^2=16(x+2)^2+(y-3)^2=4^2

Мы преобразовали наше уравнение окружности. Его центр, как мы уже определили - (-2;3), а радиус - 4.

aerendzhenova5

42.

Объяснение:

Пусть задан треугольник с катетами a и b и гипотенузой c. Высота  h = 21 опущена из вершины С на гипотенузу с, а угол А = 60°.  Второй острый угол этого прямоугольного треугольника равен
∠В = 90° - 60° = 30°. Больший катет всегда лежит против большего угла, поэтому  большим катетом является катет а, лежащий против большего угла А.
Рассмотрим прямоугольный треугольник, образованный большим катетом a заданного треугольника, высотой h, опущенной на гипотенузу и проекцией c_a большего катета a на гипотенузу.  

В этом треугольнике гипотенузой является больший катет a заданного треугольника, а высота h = 21 является катетом, лежащим против ∠В = 30° .
Известно, что катет, лежащий против угла в 30°, равен половине гипотенузы. Поэтому b = 2h = 2 · 21 = 42.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Периметры двух подобных треугольников 18 и 36, а сумма их площадей равна 30. найти площадь большего треугольника
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

platan3698952
alf206
Ивлев1508
zakaz
infosmolenskay
vapebroshop
mayskiyandrey90
lukur2005
nat5555
Yevgenevich
inessa12006
РостиславовичЮлия1147
modellisimo-a
PetrovnaTsukanov
pechinin