А²=7²+24², а=25 сторона ромба Р=4*25=100 -- периметр S=1/2*14*48=336 25*h=336, h=336/25=13,44 расстояние между параллельными сторонами
nikitamihailov22095010
10.09.2021
Пусть M — середина AB, а C′ — основание высоты, опущенной из точки C на сторону AB. Пусть E — середина отрезка CH, где H— ортоцентр треугольника ABС. Искомый угол равен удвоенному углу MEH, поскольку ∠MEН является вписанным углом, опирающимся на рассматриваемый в задаче отрезок. Пусть O— центр описанной окружности треугольника ABC. Поскольку CE=CH/2=OM, причем CE и OM параллельны, то четырехугольник OMECявляется параллелограммом. Отсюда следует, что ∠MEC′=∠OCН. Известно, что ∠OCH=|∠A−∠B|. Этот угол легко считается, если использовать тот факт, что ∠OCA=90∘−∠AOC/2=90∘−∠B=∠HCB, а также, что ∠C=180∘−∠A−∠В. Тогда искомый угол равен 80
georgegradoff122
10.09.2021
Построить касательную к данному кругу: а) параллельную данной прямой. Из центра окружности опустить перпендикуляр на данную прямую. Он пересечёт окружность в точке касания. Через полученную точку провести прямую, перпендикулярную построенному перпендикуляру к данной прямой. Эта прямая будет параллельна данной прямой.
б) перпендикулярную к данной прямой. Из центра окружности опустить перпендикуляр на данную прямую. Из центра окружности восстановить перпендикуляр к построенному перпендикуляру. Он пересечёт окружность в точке касания. Через полученную точку провести прямую, перпендикулярную к данной прямой. Эта прямая и будет перпендикулярна данной прямой.
в) под данным острым углом к прямой. В любой точке данной прямой построить прямую под заданным к ней углом. Затем по пункту а) построить параллельную касательную прямую.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Диагонали ромба равны 14см и 48см.найти периметр ромба и расстояние между параллельными сторонами. в ответе должно быть 100см, 13, 44см.
Р=4*25=100 -- периметр
S=1/2*14*48=336
25*h=336, h=336/25=13,44 расстояние между параллельными сторонами