Треугольник abc равнобедренный.периметр треугольника равен 33 см.найти стороны треугольника, если ac основание -равно 13 см не просто ответ а решение надо)
В равнобедренном треугольнике стороны при основании равны. Сумма сторон при основании - 33-13-20 см. Длина стороны - 20/2=10 см. Стороны: 10 см, 10 см, 13 см.
Paikina Natalya30
12.09.2020
Если два "египетских" треугольника со сторонами (6,8,10) приставить друг к другу катетами 6, то как раз получится такой треугольник. То есть высота к основанию 6, площадь 48, ну и ПОЛУпериметр 18. То есть радиус вписанной окружности равен 48/18 = 8/3; Радиус описанной окружности можно найти кучей но технически проще всего из теоремы синусов 2*R*sin(α) = 10; где α - угол при основании (напротив боковой стороны 10). Sin(α) = 3/5; R = 25/3; Расстояние от центра описанной окружности до основания равно 25/3 - 6 = 7/3; и лежит он снаружи треугольника, то есть между центрами вписанной и описанной окружности 7/3 + 8/3 = 5;
Ирина-Макаркина253
12.09.2020
Дано: АВСD
∠DАВ = ∠АВС = 60° ;
∠САВ = ∠СВD
Док-ть: АD + СВ = АВ Решение. Продолжим стороны ВС И АD от точек С и D до пересечения в точке О. Полученный Δ АОВ – равносторонний, т.к. ∠DАВ = ∠АВС = 60° по условию, значит, и ∠АОВ = 180° – 60° – 60° = 60°. Из равенства углов следует равенство сторон: АВ = ОВ = АО Рассмотрим ΔАВС и ΔВОD; ∠АВС = ∠ВОD = 60°; ∠САВ = ∠СВD по условию, стороны между углами также равны: АВ = ОВ. ⇒ ΔАВС = ΔВОD Из равенства треугольников следует: CВ = ОD Но АО = ОD + АD, заменив АО на АВ, а ОD на СB получим: АВ = CВ + АD, что и требовалось доказать!
Сумма сторон при основании - 33-13-20 см.
Длина стороны - 20/2=10 см.
Стороны: 10 см, 10 см, 13 см.