Задача 2.
Задача 3.
Проекциями прямых параллельных сторонам исходного параллелограмма будут прямые, проходящие через т. пересечения диагоналей и середины сторон у параллелограмма проекции
Объяснение:
Дано
АВСД - прямоугольник
АВ = 6 см
АД = 2√3 см
Найти
уг. м/ду АС и ВД
Решение
Очевидно, что АС и ВД - диагонали прямоугольника.
Обозначим т. пересечения как т. О
Тогда уг.АОД - искомый угол между диагоналями.
Обозначим
По св-вам прямоугольника, его диагонали равны и в т. пересечения делятся пополам. Т.е.
АО = ОС = ВО = ОД
По Т. Пифагора можно найти диагонали:
ВД² = АВ² + АД²
BD = \sqrt{AB^2 + AD^2} \\ BD = \sqrt{6^2 + 2\sqrt(3)^2}
Соответственно
АС = ВД = 4√3Рассмотрим тогда треугольник АОД, он равнобедренный, т.к.
Так же 2√3 равна и сторона АД нашего прямоугольника.
То есть - мы получаем, что
АО = ОД = АД = 2√3
Следовательно - ∆АОД равносторонний,
а это означает, что искомый угол AOД
Для особо дотошных:
По Т. косинусов имеем:
Отсюда
66 см²
Объяснение:
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см²
Поделитесь своими знаниями, ответьте на вопрос:
Стороны треугольника 16 дм, 20 дм, 24 дм. найти стороны треугольника, вершины которой является серединой сторон и найти его p.
АВ = 16 см
ВС = 20 см
АС=24 см
Пусть М принадлежит АС
К принадлежит АВ
Д принадлежит ВС
КД, ДМ, МК средние линии треугольника АВС
Так как вершины треугольника лежат на середине сторон,
то по правилу средней линии: каждая сторона
треугольника который ищем равен 1/2 сторонам данного треугольника
КД=1/2 АС = 24/2 = 12 (см)
ДМ=1/2 АВ = 16/2 = 8 (см)
МК=1/2ВС= 20/2 = 10 (см)
Р Δ КДМ = 12 + 8 + 10 =30 см