Пусть сторона квадрата АВСD равна х По теореме Пифагора из прямоугольного треугольника АВМ: АМ²=МВ²+АВ² АМ²=8²+х² По теореме о трех перпендикулярах АМ⊥AD. Площадь треугольника АМD равна половине произведения катетов AM·AD/2=30 AM·AD=60 x·√(64+x²)=60 Возводим в квадрат и решаем биквадратное уравнение х²·(64+х²)=3600 (х²)²+64х²-3600=0 D=64²+4·3600=4096+14400=18496=136² x²=(-64+136)/2=36 второй корень отрицательный х=6 или х=-6 ( не удовлетворяет условию задачи) ответ. Сторона квадрата ABCD 6, площадь квадрата АВСD 36.
dakimov
17.02.2020
Около треугольника можно описать окружность, притом только одну. Центр описанной окружности треугольника лежит в точке пересечения серединных перпендикуляров к его сторонам. В правильном треугольнике высота является также медианой и биссектрисой. Центр описанной окружности правильного трегольника лежит в точке пересечения высот/медиан/биссектрис. Высоты/медианы/биссектрисы правильного треугольника равны a·√3/2 Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины. Расстояние от вершины до точки пересечения медиан правильного треугольника - радиус описанной окружности (R). R= h·2/3 R= a·√3/2·2/3 = a·√3/3
Площадь круга (S) равна пR^2. S= п(a·√3/3)^2 <=> S= (п·a^2)/3 <=> a= √(3·S/п)
S= 3п (см^2) a= √(3·3п/п) <=> a= 3 (см)
bergamon
17.02.2020
№1 по теореме ФалесаМN/МP = MK/ME12/8=MK/6MK= 9 МP/МN =PE/NK8/12=PE/NK = 2 : 3 №2Треугольник АВС подобен треугольнику MNK по второму признаку подобности (по двум пропорцианильным сторонам и равному углу между ними)AB/MN = BC/NK=12/6=18/9=2 - коэф.подобности,Значит AB/MN= AC/MK , MK= 12 x 7/6=14В подобных треугольниках соответствующие углы равны.угол С =60, угол А =50№3треугольник АОС подобен треугольнику ОДВ по первому признаку подобности (по двум равным углам)Периметры подобных треугольников относятся как соответствующие стороны -Периметр АОС : периметру ВОД = АО : ОВ=2 :3,Периметрр АОС = периметр ВОД х 2 /3= 21 х 2/3=14
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дано: площадь amd=30, mb перпендикулярна плоскости abcd, mb =8, abcd-квадрат. найти : площадь abcd.
По теореме Пифагора из прямоугольного треугольника АВМ:
АМ²=МВ²+АВ²
АМ²=8²+х²
По теореме о трех перпендикулярах АМ⊥AD.
Площадь треугольника АМD равна половине произведения катетов
AM·AD/2=30
AM·AD=60
x·√(64+x²)=60
Возводим в квадрат и решаем биквадратное уравнение
х²·(64+х²)=3600
(х²)²+64х²-3600=0
D=64²+4·3600=4096+14400=18496=136²
x²=(-64+136)/2=36 второй корень отрицательный
х=6 или х=-6 ( не удовлетворяет условию задачи)
ответ. Сторона квадрата ABCD 6, площадь квадрата АВСD 36.