Четырёхугольник ABCD вписан в окружность.
∠В : ∠D = 1 : 5
∠A < в 2 раза ∠С.
Найти:∠А - ? ; ∠В - ? ; ∠С - ? ; ∠D - ? .
Решение:Если сумма противоположных углов четырёхугольника равна 180°, то около него можно описать окружность.
Около четырёхугольника ABCD описана окружность, по условию ⇒ ∠B + ∠D = 180˚; ∠A + ∠C = 180°.
Найдём ∠B и ∠D:
Пусть х - ∠В, тогда 5х - ∠D. (∠B : ∠D = 1 : 5, по условию)
Как я написала ранее, ∠B + ∠D = 180˚, по свойству.
х + 5х = 180
6х = 180
х = 30
30° - ∠B.
⇒ ∠D = 30˚ * 5 = 150˚.
Найдём ∠А и ∠С:
Пусть х - ∠А, тогда 2х - ∠С.
Как я написала ранее, ∠А + ∠С = 180°, по свойству.
х + 2х = 180
3х = 180
х = 60
60° - ∠А.
⇒ ∠С = 60° * 2 = 120°
ответ: 30°; 150°; 60°; 120°.Пирамида MABCD, основание - прямоугольник ABCD: AD=BC=18 см; AB=CD=10 см; O- точка пересечения диагоналей AС и BD, MO - высота пирамиды.
Так как у прямоугольника диагонали равны и точкой пересечения делятся пополам, то OA = OB = OC = OD - это проекции боковых ребер на основание. Проекции наклонных равны, следовательно, наклонные тоже равны : AM = BM = CM = DM - боковые ребра пирамиды. Тогда ΔAMD = ΔBMC - по трём равным сторонам, ΔAMB = ΔDMC - по трём равным сторонам.
Проведем KT║AD ⇒ OK=OT=AD/2 = 18/2 = 9 см
ΔMOT - прямоугольный, теорема Пифагора
MT² = MO² + OT² = 12² + 9² = 144+81=225 = 15²
MT = 15 см
см²
Проведем FG║DC ⇒ OG=OF=DC/2 = 10/2 = 5 см
ΔMOF - прямоугольный, теорема Пифагора
MF² = MO² + OF² = 12² + 5² = 144+25 = 169 = 13²
MF = 13 см
см²
Площадь боковой поверхности пирамиды
см²
Sбок = 384 см²
Площадь основания
см²
Площадь полной поверхности пирамиды
S = 384 + 180 = 564 см²
Поделитесь своими знаниями, ответьте на вопрос:
Одна сторона прямоугольника на 6 дм меньше другой.найти периметр прямоугольника , если его площадь равна 135 дм ².
х*(х+6)=135
х^2+6x=135
x^2+6x-135=0
K=3
D/4=9+135=144
x1=-3+12
x2=-3-12 - не подходит, т.к. сторона не может быть отрицательной
Таким образом, одна сторона равна 9, вторая 15, периметр равен (9+15)*2=48