а) Допустим AK < BK (точка K ближе к вершине A) . Обозначаем сторону основания правильной пирамиды AB=BC =CD =DA =a ; Пусть выполняется S(ABCD) =S(KPM) ⇔ a² =KM*PO/2 ⇔a² =KM*(1,5a)/2⇒KM= 4a/3 . AB= a< 4a/3 < a√2 =AC ,.т.е KM не ⊥ AD и KM не совпадает с диагоналями основания . б) Через центр основания O проведем EF ⊥ AD (тоже самое EF ⊥ CD), где E ∈ [AD] , F ∈ [BC] . || K∈[AE] || ΔOEK = ΔOFM по второму признаку равенства треугольников (OE=OF=AB/2 ;∠OEK =∠OFM=90° и ∠KOE =∠MOF-вертикальные углы) . MF=KE . --- Sпол(PABMK) = S(ABMK) +S₁бок . S(ABMK) =(AK +BM)/2 *AB ; AK +BM =(a/2 -KE) +(a/2 +MF)=a. ⇒S(ABMK) =(AK +BM)/2 *AB=a/2 *a =a²/2. S₁бок =S(APK) +S(BPM)+S(APB) +S(KPM) =AK*h/2+BM*h/2+a*h/2+a²= =(AK+BM)*h/2 +.a*h/2 +a² =a*h/2+a*h/2+a² =a*h+a² . Sпол(PABMK)=a²/2+a*h+a²=3a²/2+a*h = (3a+2a*h)/2, где h_длина апофема . ΔEPF h =EP=√((a/2)² +PO²) =√(a²/4 +9a²/4) =(a√10)/2 . --- Sпол(PABCD) = S(ABMK) +S₂бок =a²+4*a*h/2 =a²+2*a*h ; Sпол(PABMK)/ Sпол(PABCD) =(3a²+2a*h )/2 : (a²+2*a*h) = =a²(3+√10)/2 : a² (1+√10) =(3+√10) / 2(1+√10).
kotofei147516
11.09.2022
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике авд угол а меньше угла b на 10 градусов, угол д больше угла b в три раза. найти угол а, угол b, угол д.