Объяснение:
1) Все грани куба являются квадратами.
По свойствам квадрата диагонали взаимно перпендикулярны. В нашем случае АС ⟂ BD.
2) DD1 ⟂ DC по условию и DD1 ⟂ DA, DC ⋂ DA = D, тогда по признаку перпендикулярности прямой и плоскости DD1 ⟂ (ABC).
3) Так как DD1 ⟂ (ABC) , то она перпендикулярна любой прямой, лежащей в этой плоскости, в том числе DD1 ⟂ AC.
4) Получили, что
АС ⟂ BD, AC ⟂ DD1, BD ⋂ DD1 = D, тогда по признаку перпендикулярности прямой и плоскости АС ⟂ (ВВ1D1), что и требовалось доказать.
AO = корень из 29 (образующая)
Объяснение:
1.
r - малый радиус, равный 2
R - больший радиус, равный 5
ОО1 - высота, равная 4
АВ - образующая конуса (l)
Sус.б.п. = пи*(r+R)*l
Рассмотрим прямоугольную трапецию АВОО1. ВО=2, АО1=5, ОО1=4.
Проведем высоту ВК, равную ОО1.
Рассмотрим треугольник АКВ - прямоугольный. АК = АО1 - ВО = 3
АВ^2 = BK^2 + AK^2
АВ = 5
Sус.б.п. = пи*(2+5)*5 = 35пи
3.
R = 5 см
ОО1 = 2 см
АОВ - осевое сечение
Рассмотрим треугольник АОВ.
S = 1/2 * АВ * ОО1
АВ = 2R = 2*5=10 см
S = 1/2 * 10 * 2 = 10 см^2
Рассмотрим треугольник АО1О - прямоугольный.
АО^2 = OO1^2 + AO1^2
Поделитесь своими знаниями, ответьте на вопрос:
Найдите отрезки касательных ab и ac, проведенных из точки a к окружности радиуса r, если r=9см, угол bac=120°
Касательные проведенные из одной точки к окружности равны, поэтому достаточнонайти АС и она равна АВ. Радиус, проведенный в точку касания перпендикулярен касательной (теорема). Поэтому тр-к АОС-прямоугольный. АО делит угол ВАС пополам, т,е. угол ОАС=60 град., тогда угол АОС=30 град. Катет, лежащий против угла 30 град = половине гипотенузы. Отсюда Если АС=х, то АО=2х. По теореме Пифагора 81=(2х)2-х2
3х2=81 х2=27 х=3 корня из 3 Т.е. АС=3V3 Корень обозначила V
ответ: АС=АВ=3V3