Впрямоугольном параллелепипеде стороны основания равны 5 см и 12 см, а его диагональ наклонена к плоскости основания под углом 60°. найти объём параллелепипеда
Найдем диагональ прямоугольника, лежащего в основании пар-да = корень квадратный из 144-25=корень квадратный из 119 Из прямоугольного тр-ка, в котором угол равен 60 град найдем высоту пар-да. Зто корень из 119 х на тангенс 60 град=корень из 119 х на корень из 3= корень из 357. тогда объем пар-да будет равен 12х5х корень из 357=60 корней из 357.
alekseysokolov29816
27.04.2020
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
viktorovna_Imamaevich679
27.04.2020
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольном параллелепипеде стороны основания равны 5 см и 12 см, а его диагональ наклонена к плоскости основания под углом 60°. найти объём параллелепипеда