Медианы ЕN и FM треугольника EFK, длины которых 12 и 18, пересекаются под прямым углом. Найдите площадь Треугольника EFK.
Объяснение:
1) Рассмотрим выпуклый четырёхугольник EFNM у которого диагонали , по условию, взаимно- перпендикулярны .
Его площадь можно найти по формуле S = 1/2*d₁*d₂* sin (∠d₁d₂).
S(EFNM) = 1/2*12*18* sin 90°=108 ( ед²).
2) S(EFK)=S(EFNM)+S(MNK)
3) MN-средняя линия , тк M,N-середины сторон по определению медианы . По т. о средней линии треугольника MN║EF .
ΔEFK ∼ΔMNK по 2-м углам : ∠К -общий ,∠FEK=∠NMK как соответственные при MN║EF ,секущей ЕК ⇒ сходственные стороны
пропорциональны , k=
. По т об отношении площадей
подобных треугольников или
,
4*S( MNK)=S(MNK)+S(EFNM) ,
3(MNK)=108 , S(MNK)=36 ед².
4) S(EFK)=S(EFNM)+S(MNK) =108+36=144 ( ед²).
72 см²
Объяснение:
1. Прямоугольный Δ АСК. ∠ К = 60° ⇒ ∠А = 180 - 90 - 60 = 30° ⇒ СК = 1/2АК = 4√3, как катет, лежащий напротив угла в 30°.
2. Прямоугольный Δ СРК. ∠К = 60° ⇒ ∠ С = 180 - 90 - 60 = 30°
⇒ РК = 1/2 СК = 2√3, как катет, лежащий напротив угла в 30°.
По теореме Пифагора СР = √(СК² - РК²) = √36 = 6
3. Δ АВМ = Δ СРК по гипотенузе и острому углу ⇒ АМ = РК = 2√3 ⇒ МЗ = 8√3 - 2√3 - 2√3 = 4√3.
4. В 4-х угольнике ВСРМ противоположные стороны попарно параллельны, углы = 90° ⇒ является прямоугольником. ⇒ ВС = МР = 4√3
5. S трапеции АВСК = СР * (ВС + АК)/2 = 6 * (4√3 + 8√3) = 72√3 см²
Поделитесь своими знаниями, ответьте на вопрос:
1) обчисліть об'єм конуса, висота якого дорівнює 6 см, а твірна нахилена до площини основи під кутом 30°. 2) знайдіть об'єм конуса, радіус основи якого дорівнює 3 см, а твірна — √5
Раз высота конуса 6, а образующая наклонена под углом 30 градусов к плоскости основания, то радиус R основания получается
R = 6 / tg(30) = 6 * корень(3)
Знаем радиус - находим площадь основания
S = пи * R^2 = пи * 36 * 3 (пока не будем умножать 36 на 3, оставим в таком виде)
Всё имеем для вычисления объёма
V = 1/3 * S * H = 1/3 * пи * 36 * 3 * 6 = пи * 36 * 6 = 216 * пи = примерно 678,58 см3.
Вторая же задачка прикольная у тебя, если ты правильно переписала условие, конечно. Фишка тут в том, что образующая задана корень(5) - это примерно 2,23 см, а радиус основания задан 3 см. Такой конус не существует. У любого конуса длина образующей должна быть больше, чем радиус основания, а у тебя меньше. Если условие переписала правильно, то передавай привет учительнице.