shakhnina90
?>

Диагонали трапеции abcd пересекаются в точке m. найдите площадь трапеции, если площадь adm равна 6, а площадь abm равна 3

Геометрия

Ответы

ss2911

Площадь треугольника АВД равна сумме площадей треугольников АМД и АВМ и равна 6+3=9.
Высота треугольника АВД равна высоте трапеции АВСД.
Введём обозначения:
 h - высота треугольника АМД,
 H - высота треугольника АВД, 
 a - нижнее основание трапеции,
 в - верхнее основание.
Отношение высот определим из их площадей:
(1/2)a*h = 6,
(1/2)a*H = 9.
Отсюда h/Н = 6/9 = 2/3.
Теперь рассмотрим треугольник ВМС. Он подобен треугольнику АМД. Высота его равна Н - h, а площадь пропорциональна квадрату сходственных сторон.
Произведение a*h = 6*2 = 12,
                       a*H = 9*2 = 18.
Если принять целочисленные значения этих величин, то такое соотношение возможно при значениях а = 3, h = 4, Н = 6.
Тогда Н - h = 6 - 4 = 2.
Площадь треугольника ВМС равна:

(1/2)в*(Н - h) = (1/2)в*2 = в.
Отношение площадей треугольников ВМС и АМД равно 

(Н – h)²/h² = 2²/ 4² = 4/16 = 1/4.

То есть S(ВМC) = (1/4)*S(АМД),

 (1/2)в*(Н - h) = (1/4)*6.

(1/2)в*2 = 6/4,

 в = 6/4 = 3/2.

Перенесём сторону ВС к нижнему основанию в точку Д.

Получим треугольник АВД₁, равновеликий по площади трапеции АВСД.

S(АВСД) = S(АВД₁) = (1/2)*H*(a+в) = (1/2)*6*(3+(3/2)) = 27/2 = 13,5 кв.ед.

igevskoemuseumkec
Проводим прямую. Отмечаем точку А - одну из вершин нашего треугольника на прямой, отмечаем отрезок, равный периметру треугольника - находим т. К, откладываем заданный угол с вершиной в т. А. Из т. А проводим перпендикуляр к первой проведенной прямой. Откладываем на нем отрезок, равный высоте - находим т. Я. От нее откладываем перпендикуляр к последней прямой, находим его пересечение с другой стороной угла. Нашли точку В. От точки К откладываем отрезок, равный АВ; находим точку С. Соединяем В и С. ABC -искомый треугольник.
Постройте треугольник по периметру одному из углов и высоте проведенной из вершины другого угла
Вячеславовна_Сагитович
Напротив большей стороны в треугольнике лежит больший угол.
Если высота, биссектриса и медиана выходят из вершины угла между сторонами b и a, и b > a; то угол β > α; где α лежит напротив a, а β - напротив b;
высота образует со сторонами углы 90° - β со стороной a и 90° - α со стороной b;
Ясно, что 90° - α > 90° - β; то есть высота проходит "ближе" к меньшей стороне, чем биссектриса, которая делит угол пополам.
медиана делит противоположную сторону пополам, а биссектриса - в пропорции a/b < 1; то есть основание биссектрисы лежит ближе к меньшей стороне, чем основание медианы. Это означает, что вся биссектриса между вершиной и противоположной стороной лежит "ближе" к меньшей стороне, чем медиана.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Диагонали трапеции abcd пересекаются в точке m. найдите площадь трапеции, если площадь adm равна 6, а площадь abm равна 3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

YelenaZOLTANOVICh105
amxvel7596
chysvv
Газинурович
Геометрия 7 класс 5 задание
b3dllam
chavagorin
klimenokvapeshop1408
ziyaevak
magazin-71
volodin-alexander
mg4954531175
Васильев1028
kurlasku
ИвановнаВладимир1832
ЕлизаветаВладимирович