Классная задача Пусть дан прямоугольный треугольник АСВ, ∠С=90°, по свойству отрезков касательных, проведенных из одной точки к одной окружности. расстояние от этих точек до точек касания одинаковы, если К, Т и Р обозначить точки касания соответственно к гипотенузе АВ, катетем СВ и АС соответственно, то по этому свойству, если обозначить ВТ=х, то и ВК=х, тогда
АК=АВ-ВК=5-х, но тогда и АР=5-х, СТ=СР=1, сложим отрезки, из которых состоят катеты и гипотенуза. АВ=х+5-х=5, СВ=х+1; АС=5-х+1=6-х.
Периметр Р=АВ +СВ+АС=5+(1+х)+(6-х)=12/см/
ответ 12 см
Поделитесь своими знаниями, ответьте на вопрос:
Вчетырехугольнике авсd вписана окружность, ав=49, cd=47. найдите периметр чеьырехугольника.
49+47 = 96
ВС+DA = 96
P(ABCD) = 2*96 = 192