mtcover
?>

Через точку a в окружности с центром o проведена касательная ab.найдите ob если радиус ao 4, угол abo 30 градусов

Геометрия

Ответы

sanhimki47
По свойству касательной - ОА ⊥ АВ
ΔОАВ - прямоугольный.
Катет(ОА) лежащий против угла 30°(∠АВО) = 1/2 гипотенузы(ОВ)
Значит ОВ = 2ОА = 2 * 4 = 8
Через точку a в окружности с центром o проведена касательная ab.найдите ob если радиус ao 4,угол abo
alisabutusova

1. а) Если прямая параллельна оси Ох, то ордината ( у ) в любой точке на этой прямой одинакова и равна 3 => у = 3 ( рис. 1 )

б) Если прямая параллельна оси Оу, то абцисса ( х ) в любой точке на этой прямой одинакова и равна 2 => х = 2 ( рис. 2 )

2. Рисунок 3

3у + 1 = 0 => у = - 1/3 ( зел. прямая )

3х - у - 2 = 0 => у = 3х - 2 ( фиол. прямая )

Две прямые пересекаются в одной точке, координаты которой являются общими и для первой и для второй прямой. В этой точке абцисса и ордината двух прямых равны =>

3х - 2 = - 1/3

3х = 2 - 1/3

3х = 5/3

х = 5/9 ; у = - 1/3

Значит, координаты точки пересечения двух прямых - A( 5/9 ; - 1/3 )

Составим уравнение прямой, проходящей через точку А( 5/9 ; - 1/3 ) параллельно прямой y = x+1.

По-первых, у = kx + b - линейная функция, где k - угловой коэффициент.

Во-вторых, есть формула, по которой можно составить искомое уравнение прямой, параллельной другой прямой:

у - у0 = k • ( x - x0 ) , где А( х0 ; у0 )

y - ( - 1/3 ) = x - 5/9

y + 1/3 = x - 5/9

y = x - 8/9

Составим уравнение прямой, проходящей через точку А( 5/9 ; - 1/3 ) перпендикулярно прямой y = x+1.

у - у0 = ( - 1/k ) • ( x - x0 ) , где А( х0 ; у0 )

y - ( - 1/3 ) = - ( x - 5/9 )

y + 1/3 = - x + 5/9

y = - x + 2/9

3. Рисунок 4

y = x - 2 ( оранж. прямая )

x - 5y + 6 = 0 => y = ( x + 6 ) / 5 ( син. прямая )

Найдём координаты точки пересечения этих прямых:

х - 2 = ( х + 6 ) / 5

5х - 10 = х + 6

4х = 16

х = 4

у = х - 2 = 4 - 2 = 2

Значит, координаты точки пересечения двух

прямых - А( 4 ; 2 )

Диагональ параллелограмма проходит через точку А( 4 ; 2 ) и по условию также через начало координат О( 0 ; 0 ). Получаем уравнение прямой для первой диагонали

параллелограмма АС:

у = kx , A( 4 ; 2 )

k = y/x = 2/4 = 1/2 => y = x / 2

Точка О( 0 ; 0 ) - точка пересечения диагоналей параллелограмма. Диагонали параллелограмма точкой пересечения делятся пополам. Отложим отрезок ОС, равный отрезку АО => получаем точку С ( - 4 ; - 2 ). Противоположные стороны параллелограмма параллельны. Составим уравнение прямой, проходящей через точку С( - 4 ; - 2 ) параллельно прямой y = ( х + 6 ) / 5

у - у0 = k • ( x - x0 )

y - ( - 2 ) = ( 1/5 ) • ( x - ( - 4 ) )

y + 2 = ( 1/5 ) • ( x + 4 )

y = ( x/5 ) + ( 4/5 ) - 2

y = ( x/5 ) - ( 6/5 )

y = ( x - 6 ) / 5 ( фиол. прямая )

Составим уравнение прямой, проходящей через точку C( - 4 ; - 2 ) параллельно прямой y = x - 2.

у - у0 = k • ( x - x0 )

у - ( - 2 ) = х - ( - 4 )

у + 2 = х + 4

у = х + 2 ( зел. прямая )

Найдём координаты точки пересечения прямых у = ( х + 6 ) / 5 и у = х + 2:

х + 2 = ( х + 6 ) / 5

5х + 10 = х + 6

4х = - 4

х = - 1

у = х + 2 = - 1 + 2 = 1

Значит, координаты точки пересечения двух

прямых - В( - 1 ; 1 )

Диагональ параллелограмма проходит через точку В( - 1 ; 1 ) и по условию также через начало координат О( 0 ; 0 ). Получаем уравнение прямой для второй диагонали

параллелограмма ВD:

у = kx ; B( - 1 ; 1 )

k = y/x = 1/-1 = - 1

y = - x

4. Рисунок 5

x + y = 4 => y = 4 - x ( оранж. прямая )

x - y = 0 => y = x ( фиол. прямая )

Найдём координаты точки пересечения этих прямых:

4 - x = x

2x = 4

x = 2

y = 2

Значит, координаты точки пересечения двух

прямых - A( 2 ; 2 )

Составим уравнение прямой, проходящей через точку А( 2 ; 2 ) параллельно прямой у = ( х + 4 ) / 4 ( зел. прямая ):

у - у0 = k • ( x - x0 )

у - 2 = ( 1/4 ) • ( х - 2 )

у = ( х - 2 ) / 4 + 2

у = ( х + 6 ) / 4 ( син. прямая )

Подробнее - на -

Объяснение:

Lolira64

а) Пусть угол В равен х градусов, тогда угол А равен х/4 градусов (если в ... раз меньше, то надо разделить), а угол С равен (х - 90) градусов (если на ... меньше, то надо вычесть). Сумма углов треугольника равна (х + х/4 + (х - 90)) градусов или 180° ( по теореме о сумме углов треугольника). Составим уравнение и решим его.

х + х/4 + (х - 90) = 180;

х + 0,25х + х - 90 = 180;

2,25х - 90 = 180;

2,25х = 180 + 90;

2,25х = 270;

х = 270 : 2,25;

х = 120° - угол В;

х/4 = 120°/4 = 30° - угол А;

х - 90 = 120° - 90° = 30°.

ответ. ∠A = 30°; ∠B = 120°; ∠C = 30°.

б) Если в треугольнике два угла равны, то этот треугольник будет равнобедренным. Угол В равен 120°. Напротив этого угла лежит сторона АС, которая будет основанием. Две другие стороны треугольника АВ и ВС будут боковыми сторонами. Боковые стороны равнобедренного треугольника равны.

ответ. АВ = ВС.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Через точку a в окружности с центром o проведена касательная ab.найдите ob если радиус ao 4, угол abo 30 градусов
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

snopovajulia
Рогов1996
Alexander2035
annaan-dr582
Avolohova
rs90603607904
osuvorova7979
Сороченкова-Александр
Ахади
Golovinskii_Sirotkina1944
des-32463
irina-mic
npprang21
ryazantseva
БашуроваОльга369