Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25
lazu8375
25.05.2020
ΔАВС - прямоугольный (∟B = 90 °). ΔА 1 В 1 С 1 - прямоугольный (∟B 1 = 90 °). АВ = А 1 В 1 . BN - высота (BN ┴ АС). В 1 N 1 - высота ( В 1 N 1 ┴ A 1 C 1 ). BN - B 1 N 1 . Доказать: ΔАВС = Δ А 1 В 1 С 1 . Доведения: По условию: BN - высота (BN ┴ АС), тогда ∟BNC = ∟BNA = 90 °. Аналогично B 1 N 1 - высота, ∟B 1 N 1 C 1 = ∟B 1 N 1 A 1 = 90 °. Рассмотрим ΔBNA и ΔB 1 N 1 A 1 . По условию BN = B 1 N 1 и BA = В 1 А 1 ; ∟BNA = ∟B 1 N 1 A 1 = 90 °. По признаку pавенства прямоугольных треугольников имеем: ΔBNA = Δ B 1 N 1 A 1 . Отсюда ∟A = ∟A 1 . Рассмотрим ΔАВС и Δ А 1 В 1 С 1 . ∟A = ∟A 1 ; ∟ABC = ∟ А 1 В 1 С 1 = 90 °. AB = A 1 B 1 . По признаку pавенства прямоугольных треугольников имеем: ΔАВС = Δ А 1 В 1 С 1
araqsyabadalyan1988
25.05.2020
ΔАВС - прямоугольный (∟B = 90 °). ΔА 1 В 1 С 1 - прямоугольный (∟B 1 = 90 °). АВ = А 1 В 1 . BN - высота (BN ┴ АС). В 1 N 1 - высота ( В 1 N 1 ┴ A 1 C 1 ). BN - B 1 N 1 . Доказать: ΔАВС = Δ А 1 В 1 С 1 . Доведения: По условию: BN - высота (BN ┴ АС), тогда ∟BNC = ∟BNA = 90 °. Аналогично B 1 N 1 - высота, ∟B 1 N 1 C 1 = ∟B 1 N 1 A 1 = 90 °. Рассмотрим ΔBNA и ΔB 1 N 1 A 1 . По условию BN = B 1 N 1 и BA = В 1 А 1 ; ∟BNA = ∟B 1 N 1 A 1 = 90 °. По признаку pавенства прямоугольных треугольников имеем: ΔBNA = Δ B 1 N 1 A 1 . Отсюда ∟A = ∟A 1 . Рассмотрим ΔАВС и Δ А 1 В 1 С 1 . ∟A = ∟A 1 ; ∟ABC = ∟ А 1 В 1 С 1 = 90 °. AB = A 1 B 1 . По признаку pавенства прямоугольных треугольников имеем: ΔАВС = Δ А 1 В 1 С 1
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Площадь прямоугольного треугольника равна 84 дм^2, а радиус окружности, вписанной в этот треугольник, 3см. найти катеты треугольника
Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25