В параллелограмме АВСД ∠А = 30°, АД = 16 см, М - середина ВС, АМ пересекает ВД в точке N, CN пересекает АВ в точке Р, АР = 6 см. Найдите площадь параллелограмма.
============================================================
ВМ = МС = ВМ/2 = 16/2 = 8 смΔBNM подобен ΔAND по двум углам: ∠ВМN = ∠NAD - как накрест лежащие при ВС || AD и секущей АМ, ∠BNM = ∠AND - как вертикальные. Составим отношения сходственных сторон:MN/AN = BN/ND = BM/AD = 8/16 = 1/2ΔBPN подобен ΔCDN аналогично по двум угламРN/NC = BN/BD = BP/CD = 1/2 ⇒ CD = 2•BPТак АВ = CD, значит, ВР = РА = 6 смНаходим искомую площадь параллелограмма АBCD:S abcd = AB • CD • sin∠A = 12 • 16 • sin30° = 96 см²ОТВЕТ: S abcd = 96 см²АВСД - параллелограмм, АД=ВС , АВ=СД , АД║ВС , АВ║СД .
∠АВС=110° ⇒ ∠ВАД=180°-110°=70° , ∠BCD=∠BAD=70° .
∠LAD=10° , тогда ∠BAL=70°-∠ДАL=70°-10°=60° .
∠KCD=10° , тогда ∠ВСК=∠ВСD-∠KCD=70°-10°=60° .
Рассмотрим два треугольника: ΔABL и ΔBCK .
Так как в ΔABL две стороны равны АВ=АL по условию , то ΔABL -равнобедренный. А так как ещё и угол в равнобедренном треугольнике ∠ВАL=60°, то этот треугольник - равносторонний, следовательно ВL=AB=AL=CD, ∠АВL=60° ⇒
∠CBL=110°-∠ABL=110°-60°=50° .
Аналогично, ΔВСК - равносторонний (КС=ВС по условию и ∠ВСК=60°) , следовательно ВК=ВС=СК=AD, ∠KBC=60° ⇒
∠KBL=∠KBC-∠CBL=60°-50°=10° .
Теперь рассмотрим три равных треугольника: ΔADL=ΔKCD=ΔKBL . Они равны по 1 признаку равенства треугольников:
AD=KC=BK , AL=CD=BL , ∠LAD=∠KCD=∠KBL=10° .
Отсюда следует, что стороны LD=KD=KL ⇒ ΔKLD - равносторонний, а в равностороннем треугольнике все углы равны 60°.
Значит, искомый угол ∠KDL=60° .
Поделитесь своими знаниями, ответьте на вопрос:
Можно ли прямоугольный треугольник разделить прямой на два равносторонних треугольника? мне кажется, что нет.