При пересечении параллельных прямых секущей образуется 8
углов двух величин:
соответственные углы
∠1 = ∠5
∠3 = ∠7,
а так как ∠1 = ∠3 как вертикальные, то
∠1 = ∠5 = ∠3 = ∠7 = х
и соответственные углы
∠2 = ∠6
∠4 = ∠8,
а так как ∠2 = ∠4, как вертикальные, то
∠2 = ∠6 = ∠4 = ∠8 = у
Сумма односторонних углов равна 180°, например
∠3 + ∠6 = 180°
Т. е. х + у = 180°.
Углы, о которых идет речь в задаче, не равны. Пусть х - меньший из них, тогда у = х + 30°.
x + x + 30° = 180°
2x = 150°
x = 75°
∠1 = ∠5 = ∠3 = ∠7 = 75°
у = 180° - 75° = 105°
∠2 = ∠6 = ∠4 = ∠8= 105°
рисуешь равнобедренную трапецию. Проводишь 2 высоты от меньшего основания к большому. У тебя эти высоты разбивают большее основание на 3 части.
2 крайние будут равны (доказываем это из того что, два треугольника прямоугольные('NR1R и HMO) (так как высоты образуют угол в 90 градусов с большим основанием) и так как треугольники прямоугольные для их равенства требуется всего 2 признака ( гипотенузы равны(тк трапеция равнобедренная) и острые углы при большем основании равны)
из равенства треугольников следует , что те 2 отрезка равны. отрезок, находящийся посередине, равен меньшему основанию (то есть равен 20)
теперь рассмотрим треугольник NMH . Он прямоугольный. Гипотенуза (то есть С ) равна 30 см, а катет (20+4) равен 24 см. И дальше находим другой катет по теореме Пифагора . И ОТВЕТ : 18
P.S. - ниже прикрепила рисунок с кратким пояснением
Поделитесь своими знаниями, ответьте на вопрос:
Вправильную четырёхугольную пирамиду вписан шар, его объём равен 4п/3. найти: объём пирамиды, если её высота рана 5.
Vш=4πR³/3 ⇒ R³=3Vш/4π=3·4π/(3·4π)=1
R=1.
МО=МК-ОК=5-1=4.
В тр-ке МТО sin(ТМО)=ОТ/МО=1/4=0.25.
∠ТМО≈14.48°
В тр-ке МРК РК=tg(РМК)·МК=tg14.48°·5≈1.29
В квадрате АВСД АВ=2РК≈2.58
Объём пирамиды: V=Sh/3=АВ²·МК/3≈2.58²·5/3≈11.1 (ед³).