По 1 аксиоме Гильберта плоскость АВС существует,
По 3 – М и К и , соответсвенно Х принадлежат этой плоскости .
Аксиоматика Гильберта
1. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует плоскость α, которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка.
2. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти точки.
3. Если две принадлежащие прямой a различные точки A и B принадлежат некоторой плоскости α, то каждая принадлежащая прямой a точка принадлежит указанной плоскости.
4. Если существует одна точка A, принадлежащая двум плоскостям α и β, то существует по крайней мере ещё одна точка B, принадлежащая обеим этим плоскостям.
5. Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.
Задача на подобие треугольников и теоремы о параллельных плоскостях и прямых.
Проведем через точку М, А2 и В2 плоскость.
А1В1 параллельна А2В2 как линии пересечения параллельных плоскостей третьей плоскостью.
Остюда треугольники МА2В2 и МА1В1 подобны.
Примем отрезок МВ1 за х
Тогда МВ2=9+х,
МА2=9+х+4
4:(13+х)=х:(9+х)
36+4х=13х+х²
х²+9х-36=0
При необходимости полное решение квадратного уравнения запишете самостоятельно, а корни его 3 и -12. Второй корень не подходит.
х=3 см
МВ2=9+3=12 см
МА2=12+4=16 см
Поделитесь своими знаниями, ответьте на вопрос:
Укажите номера неверных утверждений. при пересечении двух параллельных nрамых третьей прямой сума накрест лежашхутлoв равно 180 2) диагонали ромба перneидикулярин. 3) центром окруености, сmисаниct около треугольника, яnngется точка пересечена его бисеeктрис.