б) Искомое расстояние - длина отрезка АН, перпендикулярного к плоскости КМЕ.
Т.к. АМ=МS; АЕ=ВЕ; АК=КС, то МК и МЕ – средние линии треугольников АМК и АМЕ.
∆ КАЕ - равнобедренный, его высота АО равна половине высоты АТ треугольника АВС.
АТ по т. Пифагора из ∆ АТС=√(АС² -ТС² )=2√5
∆ КМЕ - равнобедренный, его высоту МО найдем из прямоугольного треугольника МАО.
АО=АТ:2=√5
МО=√(МА² +АО² )=5/2
В прямоугольном ∆ МАО отрезок АН - высота, которая делит его на подобные треугольники, т. к. их острые углы равны (признак подобия прямоугольных треугольников).
Из подобия следует отношение:
АН:АМ=АО:МО
АН:[(√5):2]=√5: 5/2 ⇒ АН=1
а) Так как пересекающиеся МК и МЕ соответственно параллельны пересекающимся SC и SB, то плоскости МКЕ и CSB параллельны. АН ⊥плоскости КМЕ, следовательно, ее продолжение перпендикулярно плоскости CSB ( свойство прямой и параллельных плоскостей).
МО - средняя линия ∆ SAT, поэтому делит высоту АР, проведенную из вершины А, пополам.
Объяснение:
1) СO и DO радиусы и являются сторонами одного треугольника, соответственно их углы будут равны. CDO = DCO = 30°.
Исходя из этого, можем найти COD, который будет равен 180 - 60 = 120°
COD и AOB являются вертикальными углами, соответственно их углы равны. AOB = COD = 120°.
AO и BO равны, т.к. являются радиусами.
угол АО = углу ВО = (180 - 120)/2 = 30°
2) Угол MNP опирается на дугу MP. Следовательно, градусная мера данной дуги будет равна MNP * 2 = 36°. Угол Mop опирается на эту же дугу, но т.к. он является центровым, то его угол будет равен градусной мере этой дуги, MOP = 36°.
Треугольник MON является равнобедренным, так как MO и NO являются радиусами и между собой равны. Исходя из свойства равнобедренного треугольника, угол OMN будет равен углу MNO и соответственно равен 18°.
Т.к. нам известны 2 угла треугольника MON, не составит труда найти третий угол. NMO = 180 - 36 = 144°
Итого:
NMO = 18
MOP = 36
NOM = 144
3) Угол B опирается на дугу АС, градусная мера которой 180°, исходя из чего угол B равен 90°. По теореме пифагора находим гипотенузу АС:
Радиус равен половине диаметра:
R = D/2 = 13/2 = 6,5
4) Проведём радиусы в точки касания. Из свойств радиуса, проведенного в точку касания известно, что угол в точке касания всегда равен 90°.
Из свойства радиуса проведённого в точку касания, мы можем найти угол AOB.
AOB = 360 - 90 - 90 - ADB = 360 - 180 - 70 = 110°.
Угол ACB опирается на дугу AB, и равняется половине угла AOB.
Угол ACB = 55°
Поделитесь своими знаниями, ответьте на вопрос:
2. в прямоугольном треугольнике один из внешних углов равен 150 градусов. найдите гипотенузу треугольника, если его меньший катет равен 51 дм
2. напротив него лежит катет 51 дм. Он равен половине гипотенузы.
Значит 51*2 = 102 дм - гипотенуза