ABDC - равнобедренная трапеция (АС и BD - боковые стороны).
СВ - диагональ и биссектриса острого ∠ACD.
EF - средняя линия.
О ∈ EF.
EO = 3 см.
OF = 7 см.
Найти:
Р (ABDC) = ?
Биссектриса угла трапеции отсекает от основания трапеции равнобедренный треугольник (это не сложно доказать, если рассмотреть пару получившихся накрест лежащих углов при параллельных прямых, на рисунке я их выделила дугами). Но нам также было дано, что СВ не только биссектриса, но и диагональ. Поэтому, АВ = АС = BD.
Средняя линия EF соединяет середины боковых сторон АС и BD, но также, по свойству средней линии трапеции, она параллельна основаниям АВ и СD.
Рассмотрим ΔАВС. Отрезок ЕО║АВ (так как он лежит на прямой EF), а также его конец Е лежит на серединной точке стороны АС, поэтому, по признаку средней линии треугольника, ЕО - средняя линия ΔАВС.
ЕО - средняя линия (СО = ОВ), параллелен АВ, значит, сторона АВ в два раза больше стороны ЕО (по свойству средней линии треугольника). АВ = 2*ЕО = 2*3 см = 6 см. АВ = 6 см. Но также, по выше сказанному, АВ = АС = BD = 6 см.
Рассмотрим ΔCDB. СО = ОВ (так как ЕО - средняя линия ΔАВС) и также BF = FD (так как ЕF - средняя линия трапеции ABCD). Поэтому, OF - средняя линия ΔCDB, причём OF║CD, тогда и CD = 2*OF = 2*7 cм = 14 см. СD = 14 см.
Р (ABDC) = АВ+СD+AC+BD = 6 см+14 см+6 см+6 см = 32 см.
ответ: 32 см.
elizabetmaslova3
16.07.2020
решение представлено на фото
Объяснение:
Анатольевич-Митюшин
16.07.2020
Всё решается очень просто. Если радиус окружности равен "r", а сторона треугольника равна "а", то можно составить простое уравнение (по условию задачи)
3*а=2*pi*r Тогда сторона треугольника а=(2/3)*pi*r Радиус вписанной окружности в равносторонний треугольник вычисляется по формуле: а*(sqrt 3)/6 "Площадь данного круга"=pi*r^2 Осталось в формулу "а*(sqrt 3)/6" подставить "а=(2/3)*pi*r", возвести в квадрат и умножить на "pi", найти площадь вписанной окружности. И последнее действие: разделить pi*r^2 на площадь вписанной окружности в треугольник. Вот и всё решение.
koll23
16.07.2020
Всё решается очень просто. Если радиус окружности равен "r", а сторона треугольника равна "а", то можно составить простое уравнение (по условию задачи)
3*а=2*pi*r Тогда сторона треугольника а=(2/3)*pi*r Радиус вписанной окружности в равносторонний треугольник вычисляется по формуле: а*(sqrt 3)/6 "Площадь данного круга"=pi*r^2 Осталось в формулу "а*(sqrt 3)/6" подставить "а=(2/3)*pi*r", возвести в квадрат и умножить на "pi", найти площадь вписанной окружности. И последнее действие: разделить pi*r^2 на площадь вписанной окружности в треугольник. Вот и всё решение.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Діагональ рівнобічної трапеції ділить її гострий кут навпіл, а середню лінію - на відрізки 3 см і 7 см. знайдіть периметр трапеції.
Чертёж смотрите во вложении.
Дано:
ABDC - равнобедренная трапеция (АС и BD - боковые стороны).
СВ - диагональ и биссектриса острого ∠ACD.
EF - средняя линия.
О ∈ EF.
EO = 3 см.
OF = 7 см.
Найти:
Р (ABDC) = ?
Биссектриса угла трапеции отсекает от основания трапеции равнобедренный треугольник (это не сложно доказать, если рассмотреть пару получившихся накрест лежащих углов при параллельных прямых, на рисунке я их выделила дугами). Но нам также было дано, что СВ не только биссектриса, но и диагональ. Поэтому, АВ = АС = BD.
Средняя линия EF соединяет середины боковых сторон АС и BD, но также, по свойству средней линии трапеции, она параллельна основаниям АВ и СD.
Рассмотрим ΔАВС. Отрезок ЕО║АВ (так как он лежит на прямой EF), а также его конец Е лежит на серединной точке стороны АС, поэтому, по признаку средней линии треугольника, ЕО - средняя линия ΔАВС.
ЕО - средняя линия (СО = ОВ), параллелен АВ, значит, сторона АВ в два раза больше стороны ЕО (по свойству средней линии треугольника). АВ = 2*ЕО = 2*3 см = 6 см. АВ = 6 см. Но также, по выше сказанному, АВ = АС = BD = 6 см.
Рассмотрим ΔCDB. СО = ОВ (так как ЕО - средняя линия ΔАВС) и также BF = FD (так как ЕF - средняя линия трапеции ABCD). Поэтому, OF - средняя линия ΔCDB, причём OF║CD, тогда и CD = 2*OF = 2*7 cм = 14 см. СD = 14 см.
Р (ABDC) = АВ+СD+AC+BD = 6 см+14 см+6 см+6 см = 32 см.
ответ: 32 см.