Пусть биссектрисы внешних углов при вершинах A и B пересекаются в точке O . Тогда d(O ; AC) =d(O ; AB) = d(O ; BC) б символом d(O ; ) обозначено расстояние от точки O до прямых содержащих стороны треугольника . Из равенства d(O; AC) = d(O ; BC) : заключаем , что точка лежит на биссектрисе угла C(по обратной теореме о биссектрисе угла C ; <OCB =<OCA . Точка O один из центров вневписанных окружностей .
mar1030
22.09.2022
1. Берем цмркулем гипотенузу и делим ее пополам (надеюсь как делить пополам отрезок с циркуля и линейки не надо рассказывать)
2. Половиной гипотенузы строим окружность.
3. Берем произвольную точку К и проводим через О луч до пересечения с окружностью L. KL будет диаметром и одновременно гипотенузой искомого треугольника.
4. Далее берем циркулем наш катет. Ставим остриё в т.К и делаем засечку на нашей окружности т.М. КМ это наш катет.
Полученный треугольник прямоугольный с искомыми катетом и гипотенузой.
Yelena-Svetlana
22.09.2022
Из точки В проведём перпендикуляр ВД к АС . Для этого продолжим АС, поскольку угол ВАС больше 90, это пересечение будет за пределами треугольника. На плоскости L возьмём точку К. Проведём к ней перпендикуляр ВК из В.Это и будет искомое расстояние. ДС ребро двугранного угла образованного плоскостью L и плоскостью АВС.Угол КДВ=30 это линейный угол данного угла. Найдем ВД. Применим теорему Пифагора. ВД это общий катет треугольников ДВА и ДВС. Обозначим ДА=Х. Тогда( АВ квадрат)-(АД квадрат)=(ВС квадрат-ДС квадрат). Или (169-Х квадрат)=((225-(4+Х)квадрат). 169-Хквадрат=225-16 -8Х-Хквадрат. Отсюда Х=АД=5. Тогда ВД =корень из(АВ квадрат-АДквадрат)=корень из(169-25)=12. ВК=ВД*sin30=12*1/2=6.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Докажите, что биссектрисы внешних углов при вершинах а и б и биссектриса угла с пересекаются в одной точке
Тогда d(O ; AC) =d(O ; AB) = d(O ; BC) б символом d(O ; ) обозначено расстояние от точки O до прямых содержащих стороны треугольника .
Из равенства d(O; AC) = d(O ; BC) :
заключаем , что точка лежит на биссектрисе угла C(по обратной теореме о биссектрисе
угла C ; <OCB =<OCA . Точка O один из центров вневписанных окружностей .