AK , A₁D₁ ⊂ (ADD₁)
Найдём пересечение этих прямых: AK ∩ A₁D₁ = K₁
BK , B₁D₁ ⊂ (BDD₁)
Найдём пересечение этих прямых: BK ∩ B₁D₁ = K₂
K₁ ∈ AK ⊂ (ABK); K₂ ∈ BK ⊂ (ABK) ⇒ K₁K₂ ⊂ (ABK).
K₁ ∈ A₁D₁ ⊂ (B₁C₁D₁); K₂ ∈ B₁D₁ ⊂ (B₁C₁D₁) ⇒ K₁K₂ ⊂ (B₁C₁D₁);
K₁K₂ , B₁C₁ ⊂ (B₁C₁D₁)
Найдём пересечение этих прямых: K₁K₂ ∩ B₁C₁ = M₁
M₁ ∈ B₁C₁ ⊂ (BCC₁); B ∈ (BCC₁) проведём прямую через две точки, лежащие в одной плоскости с ребром CC₁
Получаем, что BM₁ ∩ CC₁ = M.
M₁ ∈ K₁K₂ ⊂ (ABK); B ∈ (ABK) ⇒ BM₁ ⊂ (ABK); M ∈ M₁B ⊂ (ABK) ⇒ M ∈ (ABK).
ABMK - нужное, четырёхугольное, сечение.
Дано:
ΔАВС
окр. (О; ОС)
дуга ВС : дуга АС : дуга АВ = 3 : 7 : 8
ВС = 20
Найти: ОС.
Пусть k - одна часть, тогда дуга ВС = 3k, дуга АС = 7k, дуга АВ = 8k. Т.к. в окружности 360°, то составим и решим уравнение:
3k + 7k + 8k = 360;
18k = 360;
k = 20.
Найдем дугу ВС: дуга ВС = 3 * 20 = 60°.
∠ВОС - центральный, опирается на дугу ВС, значит ∠ВОС = 60°.
ΔВОС - равнобедренный, т.к. ОВ = ОС (радиусы), по свойству углов в равнобедренном треугольнике ∠ОВС = ∠ОСВ = (180° - ∠ВОС) : 2 = (180° - 60°) : 2 = 60°.
Следовательно, ΔВОС - равносторонний и ОС = ОВ = ВС = 20.
ответ: 20.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Стороны прямоугольника 2см и 3см. найти боковую поверхность цилиндра , полученного от вращения этого прямоугольника вокруг стороны , равной 2см
Боковая площадь вычисляется по формуле: S=2πrh
S=2*π*r*h=2*π3*2=12π см²≈37,68 см²
ответ: 12π см²