1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
Fedorova_79166180822
17.04.2021
1)24-6=18 см = а + в, отсюда в=18-а=АВ медиана в равнобедренном треугольнике является и высотой ,значит треугольник АВД-прямоугольный следует ,что АВ=в= 18-а является гипотенузой АВД, АД=а -Ккатет АД исходя из свойств гипотенузы и катета,получаем,что 2 2 2 (18- а) - а = 6 раскроем скобки 2 2 324- 36 а + а - а =36
квадраты а сокращаются остается 324-36 а=36 отсюда убираем минусы так как с обоих сторон остается 36 а= 324-36 36а= 288 а=288 : 36 а= 8 см 18- 8 =10 см= АВ=ВС АС= 8+8=16 так как медиана делит пополам периметр АВС=10+10+16=36 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Утрикутнику abc проведено бісектрису bd. відомо, що центр описаного навколо abc кола збігається із центром кола, що вписане у bcd . знайдіть кути abc.