pechyclava
?>

Найдите углы ромба в котором одна из диагоналей равна его стороне

Геометрия

Ответы

Матфеопуло1006
Abcd - ромб, ad = ab = db - по условию значит треугольник adb равносторонний все углы по 60гр диагональ ромба является биссектрисой его углов значит угол ромба при вершине в равен 60*2 = 120гр ответ: 60,120,60,120 - углы ромба
Александрович Владимирович
Если все боковые ребра пирамиды наклонены к плоскости основания под одинаковым углом, то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр описанной около основания окружности AB = BC/sin(∠A) = 20 AC = AB·cos(∠A) = 10·√3 OA = OB = AB/2 = 10 OH⊥BC; OK⊥AC OH = OB·sin(90 - ∠A) = 5·√3 OK = OA·sin(30) = 5 DK = √(OD² + OK²) = 5·√2 DH = √(OD² + OH²) = 10 S(DBC) = (1/2)·BC·DH = 50 S(DAC) = (1/2)·AC·DK = 25√6 S(DAB) = (1/2)·AB·OD = 50 S(бок) = 100 + 25√6
rozhkova
Решение: 
Пусть имеется прямоугольный треугольник ABC с вписанной окружностью, причем BC -- гипотенуза. 
Известна длина гипотенузы (12+5 = 17). Известно, что две касательных, проведенных к одной окружности из одной точки, равны. На чертеже видим 3 пары касательных к одной окружности, которые попарно равны. Запишем эти соотношения (сами, сами). Так как длины отрезков гипотенузы известны, то получается, что известны длины отрезков каждого катета. Обозначим длину неизвестных отрезков катетов величиной X. Запишем выражение теоремы Пифагора для этого треугольника с учетом известных величин: 
BC^2 = AC^2 + AB^2 => 17^2 = (5+x)^2 + (12+x)^2 
Раскрываем скобки: 
289 = 25 + 10x + x^2 + 144 + 24x + x^2 
и получаем квадратное уравнение: 
2x^2 + 34x - 60 = 0 
сокращаем в 2 раза: 
x^2 + 17x - 60 = 0 
Решаем уравнение: 
D=b^2-4ac = 289 + 240 = 529 
x1,2 = (-b +- sqrt(D) ) / (2a) 
Отрицательный корень сразу отбрасываем, остается: 
x = (-17 + 23) / 2 = 3 
Окончательно, длины катетов: 
12 + 3 = 15 см и 5 + 3 = 8 см. 
Проверяем выполнение теоремы Пифаогра: 
15^2 + 8^2 = 17^2 
225+64=289 
Равенство выполняется, следовательно, найденное решение верно.решай по подобию этого

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите углы ромба в котором одна из диагоналей равна его стороне
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

most315
afoninia
Николаевна1564
natkoff5
ПаршинАндрей1928
deputy810
R7981827791127
innavinogradova1385
федороа
rinan2013
vetviptime
slastena69678
aetolstih
Kochetova92
s-laplandia6