Abcd - ромб, ad = ab = db - по условию значит треугольник adb равносторонний все углы по 60гр диагональ ромба является биссектрисой его углов значит угол ромба при вершине в равен 60*2 = 120гр ответ: 60,120,60,120 - углы ромба
Александрович Владимирович
30.09.2022
Если все боковые ребра пирамиды наклонены к плоскости основания под одинаковым углом, то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр описанной около основания окружности AB = BC/sin(∠A) = 20 AC = AB·cos(∠A) = 10·√3 OA = OB = AB/2 = 10 OH⊥BC; OK⊥AC OH = OB·sin(90 - ∠A) = 5·√3 OK = OA·sin(30) = 5 DK = √(OD² + OK²) = 5·√2 DH = √(OD² + OH²) = 10 S(DBC) = (1/2)·BC·DH = 50 S(DAC) = (1/2)·AC·DK = 25√6 S(DAB) = (1/2)·AB·OD = 50 S(бок) = 100 + 25√6
rozhkova
30.09.2022
Решение: Пусть имеется прямоугольный треугольник ABC с вписанной окружностью, причем BC -- гипотенуза. Известна длина гипотенузы (12+5 = 17). Известно, что две касательных, проведенных к одной окружности из одной точки, равны. На чертеже видим 3 пары касательных к одной окружности, которые попарно равны. Запишем эти соотношения (сами, сами). Так как длины отрезков гипотенузы известны, то получается, что известны длины отрезков каждого катета. Обозначим длину неизвестных отрезков катетов величиной X. Запишем выражение теоремы Пифагора для этого треугольника с учетом известных величин: BC^2 = AC^2 + AB^2 => 17^2 = (5+x)^2 + (12+x)^2 Раскрываем скобки: 289 = 25 + 10x + x^2 + 144 + 24x + x^2 и получаем квадратное уравнение: 2x^2 + 34x - 60 = 0 сокращаем в 2 раза: x^2 + 17x - 60 = 0 Решаем уравнение: D=b^2-4ac = 289 + 240 = 529 x1,2 = (-b +- sqrt(D) ) / (2a) Отрицательный корень сразу отбрасываем, остается: x = (-17 + 23) / 2 = 3 Окончательно, длины катетов: 12 + 3 = 15 см и 5 + 3 = 8 см. Проверяем выполнение теоремы Пифаогра: 15^2 + 8^2 = 17^2 225+64=289 Равенство выполняется, следовательно, найденное решение верно.решай по подобию этого
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите углы ромба в котором одна из диагоналей равна его стороне