Т.к. <OAF=<OCF, то треугольник AOC - равнобедренный, значит AO=OC, OF - не только медиана, но и высота и биссектриса. Т.к. OF лежит на прямой BF, то BF - тоже высота, биссектриса и медиана, а значит треугольник ABC - также равнобедренный, значит AB=BC. Т.к. расстояние до отрезка - есть высота, проведенная к нему, то OF=5см. Т.к. <ABC-равнобедренный, то высоты CH и CN равны. А т.к. треугольники AOF и FOC равны(AO=OC, AF=FC, OF-общ. сторона), то HO=ON. <HOB=<BON=<AOF=<FOC, т.к. они вертикальные. Т.к. <BHO=<ONB=90 градусов, HO=ON, <HOB=<BON, то треугольники HBO и OBN равны, значит OH=8см=ON ответ: ON=8см.
horina12
19.02.2021
Нет, ни шестиугольник, ни семиугольник не могут быть гранями правильного многогранника . ими могут быть правильные треугольники, квадраты, либо пятиугольники. других вариантов нет дело в том, что угол правильного n-угольника ( n≥6 ) меньше 120° но при каждой вершине должно быть не меньше 3 плоских углов и если бы такой правильный многогранник при n≥6 существовал, то сумма плоских углов при каждой вершине была ≥3•120°=360° но этого не может быть, потому как сумма всех плоских углов выпуклого многогранника при каждой вершине < 360°
Sergei_Olga658
19.02.2021
Нет, ни шестиугольник, ни семиугольник не могут быть гранями правильного многогранника . ими могут быть правильные треугольники, квадраты, либо пятиугольники. других вариантов нет дело в том, что угол правильного n-угольника ( n≥6 ) меньше 120° но при каждой вершине должно быть не меньше 3 плоских углов и если бы такой правильный многогранник при n≥6 существовал, то сумма плоских углов при каждой вершине была ≥3•120°=360° но этого не может быть, потому как сумма всех плоских углов выпуклого многогранника при каждой вершине < 360°
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
37 точки o и p лежат по разные стороны от прямой oc, известно что треугольник aoc=треугольнику cpa. докажите что ao параллельна cp
ответ: ON=8см.