Задание 3
Так как треугольник равнобедренный то углы при его основании равны,следовательно угол 1 равен углу К и они оба равны по 48 градусов
Угол 2 называют внешним,а по определению внешний угол и смежный с ним внутренний угол в сумме равны 180 градусов,поэтому угол 2 равен
180-48=132 градуса
Задание 4
По условию МО=ОК , а углы ВМО и АКО равны между собой.
Как вертикальные,равны между собой и углы МОВ и АОК
И теперь мы можем утверждать,что треугольники МОВ и АОК равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам второго треугольника,то Треугольники равны между собой
Задание 5
Речь идёт о равнобедреном треугольники,т к по условию ВМ=ВС,
МК-биссектриса треугольника ВМС и т к точка А лежит на биссектрисе,то и в треугольнике ВАС АК тоже биссектриса и делит угол ВАС пополам,поэтому угол ВАК равен
88:2=44 градуса
Объяснение:
Боковая грань усечённой пирамиды - равнобокая трапеция с основаниями 2 и 4 см и острым углом при большем основании, равным 60 градусов.
Боковое ребро L пирамиды равно: L = ((4 - 2)/2)/cos 60° = 1/(1/2) = 2 см.
Наклонная высота h боковой грани равна:
h = √(L² -((4-2)/2)²) = √(4 - 1) = √3 см.
Теперь проведём вертикальное сечение пирамиды через наклонные высоты противоположных боковых граней.
В сечении получим равнобокую трапецию с основаниями 2 и 4 см, боковые стороны которой равны √3 см.
Высота Н такой трапеции равна высоте пирамиды
Н = √((√3)² - ((4-2)/2)²) = √(3 - 1) = √2 см.
ответ: высота пирамиды равна √2 см.
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольном треугольнике abc угол c = 90 градусов, медиана am пересекает биссектрису bd в точке o, при этом bo = 3, od = 2. найти квадрат гипотенузы ab.
Т.к. AM- медиана, то S(AOC)=S(AOB), т.е. x+2y=3y. Значит х=y, откуда cos∠B=BC/AB=DC/AD=x/2y=1/2, т.е. ∠B=60°. Значит ∠CBD=30°, т.е. CD=BD/2=5/2, AC=3CD=15/2, AB=(15/2)/((√3)/2)=5√3, AB²=75.