MO=ON(Т.К. РАДИУСЫ)
Доказываем равенство треугольников по свойству касательных из одной точки,
Тогда угол KON=MOK и они по 60 градусов. 120/2=60 градусов.
Есть два прямоугольных треугольника. Радиусы ON и OM находятся по свойство угла в 30 градусов, т.е.
2ON=OK
2ON=12 /2(ДЕЛИЛИ ОБЕ ЧАСТИ)
ON=6
Затем находим всё по теореме Пифагора.
KN+ON=OK(все величины в квадрате)
KN2+36=144
KN2=144-36=108 градусов.
корень из KN=корень из 108 радусов и это 6 корней из 3.
KN=KM(по свойству отрезков касательных)
ответ:KN=KM=6 корней из 3.
а)зная гипотенузу найдем катеты..по теореме пифагора: a²+b² = c² (a = b = х)
2х² = 32, х = √16 = 4.
теперь найдем высоту основания:
h ² = 16 - 8 = √8
так как угол α = 45 , то h основания = h пирамиды = ребро = √8. 1-е ребро
2-е и 3 -е найдем так же по теореме пифагора:
l = √16+8 = √24
б) S бок = S1 + S2 + S3
S1 = √8 * 4 /2 = 2√8 = 4√2 (S грани, прямоуголный треугольник)
S2 = √8 * 4 /2 = 2√8 = 4√2 (S грани, прямоуголный треугольник)
S3 = 4 * 4√2/2 = 8√2 (S грани, равнобедренный треугольник)
S = 16√2
Поделитесь своими знаниями, ответьте на вопрос:
Через каждую точку прямой можно провести перпендикулярную ей прямую и причем только одну
Пусть b – данная прямая, а точка A принадлежит этой прямой. Возьмем некоторый луч b1 на прямой b с начальной точкой в A. Отложим от луча b1 угол (a1b1), равный 90°. По определению прямая содержащая луч a1 будет перпендикулярная прямой b.
Допустим, существует другая прямая перпендикулярная прямой b и проходящая через точку A. Возьмем на этой прямой луч с1, исходящий из точки A и лежащий в той же полуплоскости, что и луч a1. Тогда ∠ (a1b1) = ∠ (c1b1) = 90 º. Но согласно аксиоме 8, в данную полуплоскость можно отложить только один угол, равный 90 º. Следовательно, нельзя провести другую прямую перпендикулярную прямой b через точку A в заданную полуплоскость.