Грудинин604
?>

По : найдите углы, образованные при пересечении двух прямых, если разность двух из них равна 64°

Геометрия

Ответы

Marina281
Углы, образованные при пересечении двух прямых образуют два тупых и два острых угла. В сумме два из которых образуют смежный угол =180 градусов: 
180-64=116
116:2=58-один угол и вертикальный ему
58+64=122-второй угол и вертикальный ему
nsh25044
В угол можно вписать окружность.  
Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Центр вписанной в угол ВСД окружности лежит на биссектрисе СР
Центр вписанной в угол СДА окружности лежит на биссектрисе ДР
Т.к. точка Р для биссектрис углов ВСД и СДА общая - она является центром вписанной в оба угла окружности. 
Расстояние от центра вписанной в угол окружности до его сторон равно ее радиусу. Расстояние из Р до прямых ВС, СД, АД  - перпендикуляр и равно радиусу этой окружности.
Вариант решения:
Расстояние от точки до прямой - отрезок, проведенный к ней перпендикулярно. 
ОК, ОМ, ОН - перпендикуляры к прямым ВС, СD, AD соответственной. 
Прямоугольные ∆ СКО=∆СМО по равному острому углу при С и общей гипотенузе ОС. ⇒
КО=ОМ
Прямоугольные ∆ НОD=∆ MOD по равному острому углу при D  и общей гипотенузе OD. ⇒
НО=ОМ 
КО=ОМ, НО=ОМ⇒
КО=ОН=ОМ, что и требовалось доказать. 

Биссектрисы углов c и d трапеции abcd пересекаются в точке p, лежащей на стороне ab. докажите, что т
sashulyah3183
Пусть F,E,G - точки касания исходной окружности с диагональю и сторонами параллелограмма  (см. рисунок). Пусть также H∈AD, OH⊥AD и L - точка пересечения ОH c окружностью.

1. Т.к. ∠OGA=∠OFA=∠OHA=90°, то все точки A,G,O,F,H лежат на одной окружности с диаметром AO.

2. Треугольник ABC подобен треугольнику HFG т.к. ∠GAF=∠GHF и ∠FGH=∠FAH=∠BCA по свойству вписанных углов.

3. L - центр окружности вписанной в HFG, т.к.:
a) ∠OHF=∠OHG (опираются на равные хорды),
б)∠GFL=∠OFL-∠OFG=(90°-∠FOL/2)-∠OFG=(90°-∠FAH/2)-∠OAG, ∠GFH=180°-2∠OAG-∠FAH, т.е. ∠GFL=∠GFH/2.
Из а) и б) следует, что L - точка пересечения биссектрис треугольника  HFG.

4. Из 2 и 3 следует, что в треугольнике ABC отрезку AO соответствует отрезок HL, т.е. коэффициент подобия ABC относительно HFG равен AO/HL=AO/(OH-OL)=25/(13-7)=25/6. Отсюда BC=GF*25/6.

5.  Из прямоугольного треугольника AOF получаем NF/OF=AF/AO, т.е. GF=2NF=2OF·AF/AO=(14√(25²-7²))/25=336/25. Тогда из 4 видим, что 
BC=(336/25)·(25/6)=56.

6. Высота параллелограмма ABCD равна EO+OH=7+13=20. Значит, площадь равна 20·BC=20*56=1120. 

P.S. Есть ощущение, что BC можно и проще найти, но... :))
Впараллелограмме abcd проведена диагональ ac. точка o является центром окружности, вписанной в треуг

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

По : найдите углы, образованные при пересечении двух прямых, если разность двух из них равна 64°
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Sergei248
Джамалутдинова Докучаев
Филипп1054
Алина Ракитин1730
Andrei-Shchukin
tarja4140
Николаевна
Sergeevna-Makarov
maksimovskiy7657
Хачатурович978
av4738046
ruslanchikagadzhanov
Kalmikova1666
baxirchik
oyunabaduraeva