Можно и с рисунком. Касательные к окружности, проведённые из одной точки, равны. Обозначим равные отрезки как показано на рисунке через x, y и z. AB=x+z, AC=x+y. По теореме биссектрис АС/АВ=СД/ВД, (x+y)/(x+z)=y/z, xz+yz=xy+yz, xz=xy, z=y. СД/ВД=у/z=1, значит АС/АВ=1, значит АВ=АС. Треугольник АВС - равнобедренный, в нём АД - высота и биссектриса, центр вписанной окружности лежит на биссектрисе, вписанная окружность касается стороны ВС в точке Д, но это не значит, что АВ=ВС. Это равенство может быть только если тр-ник АВС правильный, но это лишь частный случай. Не доказано.
simonovaliubov5852
23.01.2022
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
nestruev
23.01.2022
Параллельные прямые, которые исходят из точек С, Р и К перпендикулярны к прямой С1К1. Проведем CN, NP1,C1M, ML так, что CMPN и MLK1C1 - прямоугольники. Из условия СС1 = 3 см, РР1 = 5 см. Поскольку СС1Р1N - прямоугольник (три угла равны 90 градусов), то CC1 = NP1 = 3 см. Аналогично из прямоугольника MPP1C1: MC1 = PP1 = 5 см, из прямоугольника MLK1C1: МС1 = LK1 = 5 см. CM = NP = NP1 + P1P, CM = 3 + 5 = 8 см. Рассмотрим треугольники CMP и KLP: СР = РК по условию, <MPC = <KPL как вертикальные, <CMP = <KLP = 90 градусов. Следовательно, треугольника CMP и KLP равны по стороне и двум прилежащим к ней углам. Исходя из равенства треугольников, CM = KL = 5 см. KK1 = KL + LK1. Имеем: KK1 = 8 + 5 = 13 см. ответ: 13 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Окружность вписанная в треугольник авс касается стороны вс в точке d. докажите что если луч аd - биссектриса угла треугольника то ав=вс. с рисунком)
Касательные к окружности, проведённые из одной точки, равны.
Обозначим равные отрезки как показано на рисунке через x, y и z.
AB=x+z, AC=x+y.
По теореме биссектрис АС/АВ=СД/ВД,
(x+y)/(x+z)=y/z,
xz+yz=xy+yz,
xz=xy,
z=y.
СД/ВД=у/z=1, значит АС/АВ=1, значит АВ=АС.
Треугольник АВС - равнобедренный, в нём АД - высота и биссектриса, центр вписанной окружности лежит на биссектрисе, вписанная окружность касается стороны ВС в точке Д, но это не значит, что АВ=ВС. Это равенство может быть только если тр-ник АВС правильный, но это лишь частный случай.
Не доказано.