Шаг 1. Чезез точки U и V, которые принадлежат одной грани, и, следовательно, одной плоскости, проводим прямую. Точки этой прямой все принадлежат секущей плоскости. Точка T лежит в плоскости основания, поэтому неплохо бы найти найти точку прямой UV, которая также принадлежала бы основанию. Для этого проводим прямую CD, и находим точку ее пересечения с прямой UV – W.
Шаг 2. Проводим прямую WT, принадлежащую плоскости основания. Находим точку пересечения этой прямой ребра AD – X.
Шаг 3. Точка V лежит в задней грани, поэтому надо бы найти точку прямой WT, которая принадлежала бы плоскости задней грани. Для этого проведем прямую BC, которая принадлежит как плоскости основания, так и плоскости задней грани, и найдем точку ее пересечения с прямой WT – Y. Через две точки задней грани проводим прямую YV, и находим место пересечения этой прямой с ребром BB_1 – Z.
Шаг 4. Окончание построения. Соединяем полученные точки отрезками, и строим многоугольник сечения.
Ludmila777020
28.05.2020
трапеция АВСД, МН-отрезок, ВС=1, АД=6, МН=4, продлеваем боковые стороны до пересечения их в точке О, треугольник АОС подобен треуг.МОН и ВОС по двум равным соответственным углам при основании треугольников, в подобных треугольниках площади относятся как квадраты соответствующих сторон, ВС²/АД²=S треуг.ВОС /S треуг.АОД, 1/36=S ΔВОС/S ΔАОД, S ΔВОС= SΔАОД/36, МН²/АД²=S ΔМОН/S ΔАОД, 16/36=S ΔМОН/S ΔАОД, S ΔМОН=16S ΔАОД/36, S трап.МВСН=S ΔМОН-S ΔВОС=16S ΔАОД/36 - S ΔАОД/36=15S ΔАОД/36, S трапец.АМНД=S ΔАОД - S ΔМОН=S ΔАОД - 15S ΔАОД/36=21S ΔАОД/36, трап.МВСН / трапец.АМНД = (15S ΔАОД/36) / (21S ΔАОД/36)=15/21=5/7
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Периметр равнобедренного треугольника равен234, а основание равно 104. найти площадь
Объяснение:
Шаг 1. Чезез точки U и V, которые принадлежат одной грани, и, следовательно, одной плоскости, проводим прямую. Точки этой прямой все принадлежат секущей плоскости. Точка T лежит в плоскости основания, поэтому неплохо бы найти найти точку прямой UV, которая также принадлежала бы основанию. Для этого проводим прямую CD, и находим точку ее пересечения с прямой UV – W.
Шаг 2. Проводим прямую WT, принадлежащую плоскости основания. Находим точку пересечения этой прямой ребра AD – X.
Шаг 3. Точка V лежит в задней грани, поэтому надо бы найти точку прямой WT, которая принадлежала бы плоскости задней грани. Для этого проведем прямую BC, которая принадлежит как плоскости основания, так и плоскости задней грани, и найдем точку ее пересечения с прямой WT – Y. Через две точки задней грани проводим прямую YV, и находим место пересечения этой прямой с ребром BB_1 – Z.
Шаг 4. Окончание построения. Соединяем полученные точки отрезками, и строим многоугольник сечения.