Федоровна-Васильева
?>

Квадрат abcp со стороной 10 см согнули на 90° по диагонали ас. наити расстояние между точками b и p. решение

Геометрия

Ответы

Полковников_Милана
Если соединить точки В и Р отрезком, то получится прямоугольный треугольник. Катетами будут 1/2 диагонали квадрата. Расстояние между точками будет гипотенуза. Диагональ квадрата=√(10^2+10^2)=10√2.
значит катеты=5√2.
Гипотенуза=√(50+50)=10
timonina29

1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение

х+х+6х+6х=84

14х=84

х=84:14

х=6

Тогда 6х=6×6=36

Проверка: 6+6+36+36=84

ответ: 6; 6; 36; 36


2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см

BD и АС являются диагоналями прямоугольника ABCD.

Диагонали в прямоугольнике равны, т.е BD=АС=22см

О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см

Рboc=ОB+ОC+ВC

Рboc=11+11+18=40см

3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);


сумма соседних углов ромба равна 180°;


противоположные углы ромба равны



4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать


5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см,  отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник.   Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см

Кольцова

1. От точки А строим угол, равный данному (описано в первом

варианте) и на полученной второй его стороне откладываем отрезок

АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на

прямую "а". Для этого:

Из точки В проводим окружность любого радиуса R, чтобы пересекла

прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим

две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр.

На пересечении прямых ВМ и "а" ставим точку С.

Соединяем точки А,В и С и получаем прямоугольный треугольник АВС

с прямым углом <C и с заданными гипотенузой и острым углом.

2.  На прямой  "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ  соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен.

3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С.

Соединив точки А,С и В получаем искомый треугольник.

P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Квадрат abcp со стороной 10 см согнули на 90° по диагонали ас. наити расстояние между точками b и p. решение
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Vkois56
yaart-klementiev29
Kozloff-ra20146795
Olga1233
ogonizoloto
Feyruz90
cmenick29
annashersheva
Moroshkina-Aristova2011
petrosyan35
Donleksa2016
symkifm
evgeniishulov4696
tinadarsi
darialyagina