1. 60
2. АВ = 70°, АС = ВС = 145°.
Объяснение:
1.
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
_______________
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
2 Задача
Если О - центр окружности, то угол АОВ - центральный.
Центральный угол равен дуге, на которую опирается. Отсюда, дуга АВ = 70°.
Угол САВ = углу СВА, тогда дуга АС = дуге ВС = (360° - 70°) / 2 = 290° / 2 = 145°.
Поделитесь своими знаниями, ответьте на вопрос:
Ac равен 16 см cd медиана угол a равен 60 градусов
потенциальная энергия равна mgh
после отклонения шарика на 30градусов, а значит шарик стал выше над поверхностью, чем был до этого. чтобы найти новую высоту - h1.
h1 = изменение высоты+h
изменение высоты мы возмем из образовавшегося треугольника с углом 30 градусов и стороной(самой нитью) 30 градусов нить будет являться гипотенузой, а катет на против угла 30 равен половине гипотенузы(10см) но это нижний катет
теперь по т.пифагора посчитаем второй катет(находящийся там, где в начальный момент была нить) l=
ну а теперь найдем изменение:
20-10*корень 3
получается что новая потенциальная энергия будет равна:
mg(h+20-10*корень3) из полученного выражения можем сделать вывод, что кинетическая энергия возросла